1ZVI

Rat Neuronal Nitric Oxide Synthase Oxygenase Domain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.202 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Structural Analysis of Isoform-Specific Inhibitors Targeting the Tetrahydrobiopterin Binding Site of Human Nitric Oxide Synthases.

Matter, H.Kumar, H.S.Fedorov, R.Frey, A.Kotsonis, P.Hartmann, E.Frohlich, L.G.Reif, A.Pfleiderer, W.Scheurer, P.Ghosh, D.K.Schlichting, I.Schmidt, H.H.

(2005) J Med Chem 48: 4783-4792

  • DOI: https://doi.org/10.1021/jm050007x
  • Primary Citation of Related Structures:  
    1ZVI, 1ZVL

  • PubMed Abstract: 

    Nitric oxide synthesized from l-arginine by nitric oxide synthase isoforms (NOS-I-III) is physiologically important but also can be deleterious when overproduced. Selective NOS inhibitors are of clinical interest, given their differing pathophysiological roles. Here we describe our approach to target the unique NOS (6R,1'R,2'S)-5,6,7,8-tetrahydrobiopterin (H(4)Bip) binding site. By a combination of ligand- and structure-based design, the structure-activity relationship (SAR) for a focused set of 41 pteridine analogues on four scaffolds was developed, revealing selective NOS-I inhibitors. The X-ray crystal structure of rat NOS-I dimeric-oxygenase domain with H(4)Bip and l-arginine was determined and used for human isoform homology modeling. All available NOS structural information was subjected to comparative analysis of favorable protein-ligand interactions using the GRID/concensus principal component analysis (CPCA) approach to identify the isoform-specific interaction site. Our interpretation, based on protein structures, is in good agreement with the ligand SAR and thus permits the rational design of next-generation inhibitors targeting the H(4)Bip binding site with enhanced isoform selectivity for therapeutics in pathology with NO overproduction.


  • Organizational Affiliation

    Sanofi-Aventis, Chemical Sciences, Drug Design, Building G 878, D-65926 Frankfurt am Main, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Nitric-oxide synthase, brain420Rattus norvegicusMutation(s): 0 
Gene Names: Nos1Bnos
EC: 1.14.13.39
UniProt
Find proteins for P29476 (Rattus norvegicus)
Explore P29476 
Go to UniProtKB:  P29476
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP29476
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.202 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 43.183α = 90
b = 107.522β = 90
c = 163.027γ = 90
Software Package:
Software NamePurpose
ProDCdata collection
XDSdata reduction
AMoREphasing
CNSrefinement
XDSdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2005-08-02
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Derived calculations, Version format compliance
  • Version 1.3: 2017-10-11
    Changes: Refinement description
  • Version 1.4: 2024-02-14
    Changes: Data collection, Database references, Derived calculations