1HHT

RNA dependent RNA polymerase from dsRNA bacteriophage phi6 plus template


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.271 
  • R-Value Work: 0.237 
  • R-Value Observed: 0.237 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

A Mechanism for Initiating RNA-Dependent RNA Polymerization

Butcher, S.J.Grimes, J.M.Makeyev, E.V.Bamford, D.H.Stuart, D.I.

(2001) Nature 410: 235

  • DOI: https://doi.org/10.1038/35065653
  • Primary Citation of Related Structures:  
    1HHS, 1HHT, 1HI0, 1HI1, 1HI8

  • PubMed Abstract: 

    In most RNA viruses, genome replication and transcription are catalysed by a viral RNA-dependent RNA polymerase. Double-stranded RNA viruses perform these operations in a capsid (the polymerase complex), using an enzyme that can read both single- and double-stranded RNA. Structures have been solved for such viral capsids, but they do not resolve the polymerase subunits in any detail. Here we show that the 2 A resolution X-ray structure of the active polymerase subunit from the double-stranded RNA bacteriophage straight phi6 is highly similar to that of the polymerase of hepatitis C virus, providing an evolutionary link between double-stranded RNA viruses and flaviviruses. By crystal soaking and co-crystallization, we determined a number of other structures, including complexes with oligonucleotide and/or nucleoside triphosphates (NTPs), that suggest a mechanism by which the incoming double-stranded RNA is opened up to feed the template through to the active site, while the substrates enter by another route. The template strand initially overshoots, locking into a specificity pocket, and then, in the presence of cognate NTPs, reverses to form the initiation complex; this process engages two NTPs, one of which acts with the carboxy-terminal domain of the protein to prime the reaction. Our results provide a working model for the initiation of replication and transcription.


  • Organizational Affiliation

    Institute of Biotechnology and Department of Biosciences, Viikki Biocenter, PO Box 56 (Viikinkaari 5), 00014 University of Helsinki, Finland.


Macromolecules

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
P2 PROTEIND [auth P],
E [auth Q],
F [auth R]
664Cystovirus phi6Mutation(s): 0 
UniProt
Find proteins for P11124 (Pseudomonas phage phi6)
Explore P11124 
Go to UniProtKB:  P11124
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP11124
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
DNA (5'-(*TP*TP*TP*CP*C)-3')A [auth D],
B [auth E],
C [auth F]
5N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.271 
  • R-Value Work: 0.237 
  • R-Value Observed: 0.237 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 105.089α = 90
b = 92.239β = 101.04
c = 140.64γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-03-27
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance