7CAH

The interface of H014 Fab binds to SARS-CoV-2 S


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.90 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody.

Lv, Z.Deng, Y.Q.Ye, Q.Cao, L.Sun, C.Y.Fan, C.Huang, W.Sun, S.Sun, Y.Zhu, L.Chen, Q.Wang, N.Nie, J.Cui, Z.Zhu, D.Shaw, N.Li, X.F.Li, Q.Xie, L.Wang, Y.Rao, Z.Qin, C.F.Wang, X.

(2020) Science 369: 1505-1509

  • DOI: 10.1126/science.abc5881
  • Primary Citation of Related Structures:  
    7CAH, 7CAK, 7CAI, 7CAB

  • PubMed Abstract: 
  • The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented public health crisis. There are no approved vaccines or therapeutics for treating COVID-19. Here ...

    The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented public health crisis. There are no approved vaccines or therapeutics for treating COVID-19. Here we report a humanized monoclonal antibody, H014, that efficiently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 at nanomolar concentrations by engaging the spike (S) receptor binding domain (RBD). H014 administration reduced SARS-CoV-2 titers in infected lungs and prevented pulmonary pathology in a human angiotensin-converting enzyme 2 mouse model. Cryo-electron microscopy characterization of the SARS-CoV-2 S trimer in complex with the H014 Fab fragment unveiled a previously uncharacterized conformational epitope, which was only accessible when the RBD was in an open conformation. Biochemical, cellular, virological, and structural studies demonstrated that H014 prevents attachment of SARS-CoV-2 to its host cell receptors. Epitope analysis of available neutralizing antibodies against SARS-CoV and SARS-CoV-2 uncovered broad cross-protective epitopes. Our results highlight a key role for antibody-based therapeutic interventions in the treatment of COVID-19.


    Organizational Affiliation

    University of Chinese Academy of Sciences, Beijing 100049, China.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Light chain of H014 FabD105Homo sapiensMutation(s): 0 
Protein Feature View
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
Heavy chain of H014 FabE222Homo sapiensMutation(s): 0 
Protein Feature View
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetailsImage
Spike glycoproteinA194Severe acute respiratory syndrome coronavirus 2Mutation(s): 0 
Gene Names: S2
Find proteins for P0DTC2 (Severe acute respiratory syndrome coronavirus 2)
Explore P0DTC2 
Go to UniProtKB:  P0DTC2
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 3.90 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2020-08-12
    Type: Initial release
  • Version 1.1: 2020-09-30
    Changes: Database references