6W2A

1.65 A resolution structure of SARS-CoV 3CL protease in complex with inhibitor 7j


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.203 
  • R-Value Work: 0.172 
  • R-Value Observed: 0.173 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice.

Rathnayake, A.D.Zheng, J.Kim, Y.Perera, K.D.Mackin, S.Meyerholz, D.K.Kashipathy, M.M.Battaile, K.P.Lovell, S.Perlman, S.Groutas, W.C.Chang, K.O.

(2020) Sci Transl Med 12

  • DOI: 10.1126/scitranslmed.abc5332
  • Primary Citation of Related Structures:  
    6XMK, 6W2A, 6VGZ, 6VGY, 6VH1, 6VH0, 6VH3, 6VH2

  • PubMed Abstract: 
  • Pathogenic coronaviruses are a major threat to global public health, as exemplified by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the newly emerged SARS-CoV-2, the causative ...

    Pathogenic coronaviruses are a major threat to global public health, as exemplified by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the newly emerged SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). We describe herein the structure-guided optimization of a series of inhibitors of the coronavirus 3C-like protease (3CLpro), an enzyme essential for viral replication. The optimized compounds were effective against several human coronaviruses including MERS-CoV, SARS-CoV, and SARS-CoV-2 in an enzyme assay and in cell-based assays using Huh-7 and Vero E6 cell lines. Two selected compounds showed antiviral effects against SARS-CoV-2 in cultured primary human airway epithelial cells. In a mouse model of MERS-CoV infection, administration of a lead compound 1 day after virus infection increased survival from 0 to 100% and reduced lung viral titers and lung histopathology. These results suggest that this series of compounds has the potential to be developed further as antiviral drugs against human coronaviruses.


    Organizational Affiliation

    Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA. kchang@vet.ksu.edu stanley-perlman@uiowa.edu bill.groutas@wichita.edu.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Replicase polyprotein 1aAB310Severe acute respiratory syndrome-related coronavirusMutation(s): 0 
Gene Names: 1a
EC: 3.4.19.12 (PDB Primary Data), 3.4.22 (PDB Primary Data), 3.4.22.69 (PDB Primary Data)
Find proteins for P0C6U8 (Severe acute respiratory syndrome coronavirus)
Explore P0C6U8 
Go to UniProtKB:  P0C6U8
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
VDJ
Query on VDJ

Download Ideal Coordinates CCD File 
A, B
[4,4-bis(fluoranyl)cyclohexyl]methyl ~{N}-[(2~{S})-1-[[(1~{R},2~{S})-1-[bis(oxidanyl)-oxidanylidene-$l^{5}-sulfanyl]-1-oxidanyl-3-[(3~{S})-2-oxidanylidenepyrrolidin-3-yl]propan-2-yl]amino]-4-methyl-1-oxidanylidene-pentan-2-yl]carbamate
C21 H35 F2 N3 O8 S
BHZBRFONZANPNK-IUVQAAGXSA-N
 Ligand Interaction
QYS
Query on QYS

Download Ideal Coordinates CCD File 
A, B
(1S,2S)-2-[(N-{[(4,4-difluorocyclohexyl)methoxy]carbonyl}-L-leucyl)amino]-1-hydroxy-3-[(3S)-2-oxopyrrolidin-3-yl]propane-1-sulfonic acid
C21 H35 F2 N3 O8 S
BHZBRFONZANPNK-ZYHFAYPJSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.203 
  • R-Value Work: 0.172 
  • R-Value Observed: 0.173 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 55.004α = 90
b = 99.999β = 108.31
c = 59.269γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
Aimlessdata scaling
PHASERphasing
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)United StatesR01 AI109039
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)United StatesP30GM110761

Revision History 

  • Version 1.0: 2020-08-12
    Type: Initial release
  • Version 1.1: 2020-08-19
    Changes: Database references
  • Version 1.2: 2020-09-02
    Changes: Database references