4R22

TnrA-DNA complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.6 Å
  • R-Value Free: 0.279 
  • R-Value Work: 0.261 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis.

Schumacher, M.A.Chinnam, N.B.Cuthbert, B.Tonthat, N.K.Whitfill, T.

(2015) Genes Dev. 29: 451-464

  • DOI: 10.1101/gad.254714.114
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • All cells must sense and adapt to changing nutrient availability. However, detailed molecular mechanisms coordinating such regulatory pathways remain poorly understood. In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry co ...

    All cells must sense and adapt to changing nutrient availability. However, detailed molecular mechanisms coordinating such regulatory pathways remain poorly understood. In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA, which is deactivated by feedback-inhibited glutamine synthetase (GS) during nitrogen excess and stabilized by GlnK upon nitrogen depletion, and the repressor GlnR. Here we describe a complete molecular dissection of this network. TnrA and GlnR, the global nitrogen homeostatic transcription regulators, are revealed as founders of a new structural family of dimeric DNA-binding proteins with C-terminal, flexible, effector-binding sensors that modulate their dimerization. Remarkably, the TnrA sensor domains insert into GS intersubunit catalytic pores, destabilizing the TnrA dimer and causing an unprecedented GS dodecamer-to-tetradecamer conversion, which concomitantly deactivates GS. In contrast, each subunit of the GlnK trimer "templates" active TnrA dimers. Unlike TnrA, GlnR sensors mediate an autoinhibitory dimer-destabilizing interaction alleviated by GS, which acts as a GlnR chaperone. Thus, these studies unveil heretofore unseen mechanisms by which inducible sensor domains drive metabolic reprograming in the model Gram-positive bacterium B. subtilis.


    Organizational Affiliation

    Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA maria.schumacher@duke.edu.




Macromolecules

Find similar proteins by: Sequence  |  Structure


Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
HTH-type transcriptional regulator TnrA
B
82Bacillus megaterium (strain WSH-002)Mutation(s): 0 
Gene Names: tnrA
Find proteins for G2RUZ1 (Bacillus megaterium (strain WSH-002))
Go to UniProtKB:  G2RUZ1
Entity ID: 2
MoleculeChainsLengthOrganism
DNA (5'-D(*CP*GP*TP*GP*TP*AP*AP*GP*GP*AP*AP*TP*TP*CP*TP*GP*AP*CP*AP*CP*G)-3')G21synthetic construct
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.6 Å
  • R-Value Free: 0.279 
  • R-Value Work: 0.261 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 66.440α = 90.00
b = 46.390β = 90.00
c = 42.460γ = 90.00
Software Package:
Software NamePurpose
PDB_EXTRACTdata extraction
MOSFLMdata reduction
PHASERphasing
SCALAdata scaling
ADSCdata collection
CNSrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 2014-08-08 
  • Released Date: 2015-03-04 
  • Deposition Author(s): Schumacher, M.A.

Revision History 

  • Version 1.0: 2015-03-04
    Type: Initial release