4BHH

Crystal structure of tetramer of La Crosse virus nucleoprotein in complex with ssRNA


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.4 Å
  • R-Value Free: 0.252 
  • R-Value Work: 0.198 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Structural Basis for Encapsidation of Genomic RNA by La Crosse Orthobunyavirus Nucleoprotein.

Reguera, J.Malet, H.Weber, F.Cusack, S.

(2013) Proc.Natl.Acad.Sci.USA 110: 7246

  • DOI: 10.1073/pnas.1302298110
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The nucleoprotein (NP) of segmented negative-strand RNA viruses such as Orthomyxo-, Arena-, and Bunyaviruses coats the genomic viral RNA and together with the polymerase forms ribonucleoprotein particles (RNPs), which are both the template for replic ...

    The nucleoprotein (NP) of segmented negative-strand RNA viruses such as Orthomyxo-, Arena-, and Bunyaviruses coats the genomic viral RNA and together with the polymerase forms ribonucleoprotein particles (RNPs), which are both the template for replication and transcription and are packaged into new virions. Here we describe the crystal structure of La Crosse Orthobunyavirus NP both RNA free and a tetrameric form with single-stranded RNA bound. La Crosse Orthobunyavirus NP is a largely helical protein with a fold distinct from other bunyavirus genera NPs. It binds 11 RNA nucleotides in the positively charged groove between its two lobes, and hinged N- and C-terminal arms mediate oligomerization, allowing variable protein-protein interface geometry. Oligomerization and RNA binding are mediated by residues conserved in the Orthobunyavirus genus. In the twofold symmetric tetramer, 44 nucleotides bind in a closed ring with sharp bends at the NP-NP interfaces. The RNA is largely inaccessible within a continuous internal groove. Electron microscopy of RNPs released from virions shows them capable of forming a hierarchy of more or less compact irregular helical structures. We discuss how the planar, tetrameric NP-RNA structure might relate to a polar filament that upon supercoiling could be packaged into virions. This work gives insight into the RNA encapsidation and protection function of bunyavirus NP, but also highlights the need for dynamic rearrangements of the RNP to give the polymerase access to the template RNA.


    Organizational Affiliation

    European Molecular Biology Laboratory, 38042 Grenoble Cedex 9, France.




Macromolecules

Find similar proteins by: Sequence  |  Structure


Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
NUCLEOPROTEIN
B, D, F, Z
236Bunyavirus La CrosseMutation(s): 0 
Gene Names: N
Find proteins for P04873 (Bunyavirus La Crosse)
Go to UniProtKB:  P04873
Entity ID: 2
MoleculeChainsLengthOrganism
POLY-URIDINE 45-MERR45synthetic construct
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.4 Å
  • R-Value Free: 0.252 
  • R-Value Work: 0.198 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 82.950α = 90.00
b = 86.460β = 106.63
c = 90.190γ = 90.00
Software Package:
Software NamePurpose
PHASERphasing
XDSdata reduction
XSCALEdata scaling
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2013-04-24
    Type: Initial release
  • Version 1.1: 2013-05-15
    Type: Database references