1E3I

Mouse class II alcohol dehydrogenase complex with NADH and inhibitor


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.08 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.198 
  • R-Value Observed: 0.198 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Crystal Structure of Mouse Class II Alcohol Dehydrogenase Reveal Determinants of Substrate Specificity and Catalytic Efficiency

Svensson, S.Hoeoeg, J.O.Schneider, G.Sandalova, T.

(2000) J Mol Biol 302: 441

  • DOI: https://doi.org/10.1006/jmbi.2000.4039
  • Primary Citation of Related Structures:  
    1E3E, 1E3I, 1E3L

  • PubMed Abstract: 

    The structure of mouse class II alcohol dehydrogenase (ADH2) has been determined in a binary complex with the coenzyme NADH and in a ternary complex with both NADH and the inhibitor N-cyclohexylformamide to 2.2 A and 2.1 A resolution, respectively. The ADH2 dimer is asymmetric in the crystal with different orientations of the catalytic domains relative to the coenzyme-binding domains in the two subunits, resulting in a slightly different closure of the active-site cleft. Both conformations are about half way between the open apo structure and the closed holo structure of horse ADH1, thus resembling that of ADH3. The semi-open conformation and structural differences around the active-site cleft contribute to a substantially different substrate-binding pocket architecture as compared to other classes of alcohol dehydrogenase, and provide the structural basis for recognition and selectivity of alcohols and quinones. The active-site cleft is more voluminous than that of ADH1 but not as open and funnel-shaped as that of ADH3. The loop with residues 296-301 from the coenzyme-binding domain is short, thus opening up the pocket towards the coenzyme. On the opposite side, the loop with residues 114-121 stretches out over the inter-domain cleft. A cavity is formed below this loop and adds an appendix to the substrate-binding pocket. Asp301 is positioned at the entrance of the pocket and may control the binding of omega-hydroxy fatty acids, which act as inhibitors rather than substrates. Mouse ADH2 is known as an inefficient ADH with a slow hydrogen-transfer step. By replacing Pro47 with His, the alcohol dehydrogenase activity is restored. Here, the structure of this P47H mutant was determined in complex with NADH to 2.5 A resolution. His47 is suitably positioned to act as a catalytic base in the deprotonation of the substrate. Moreover, in the more closed subunit, the coenzyme is allowed a position closer to the catalytic zinc. This is consistent with hydrogen transfer from an alcoholate intermediate where the Pro/His replacement focuses on the function of the enzyme.


  • Organizational Affiliation

    Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ALCOHOL DEHYDROGENASE, CLASS II
A, B
376Mus musculusMutation(s): 0 
Gene Names: ADH-2
EC: 1.1.1.1
UniProt
Find proteins for Q9QYY9 (Mus musculus)
Explore Q9QYY9 
Go to UniProtKB:  Q9QYY9
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9QYY9
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
NAI
Query on NAI

Download Ideal Coordinates CCD File 
C [auth A],
G [auth B]
1,4-DIHYDRONICOTINAMIDE ADENINE DINUCLEOTIDE
C21 H29 N7 O14 P2
BOPGDPNILDQYTO-NNYOXOHSSA-N
CXF
Query on CXF

Download Ideal Coordinates CCD File 
D [auth A],
H [auth B]
CYCLOHEXYLFORMAMIDE
C7 H13 N O
SWGXDLRCJNEEGZ-UHFFFAOYSA-N
ZN
Query on ZN

Download Ideal Coordinates CCD File 
E [auth A],
F [auth A],
I [auth B],
J [auth B]
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.08 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.198 
  • R-Value Observed: 0.198 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 79.253α = 90
b = 81.07β = 90
c = 102.187γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-09-12
    Type: Initial release
  • Version 1.1: 2013-10-30
    Changes: Atomic model, Data collection, Database references, Derived calculations, Non-polymer description, Other, Refinement description, Structure summary, Version format compliance
  • Version 1.2: 2018-01-17
    Changes: Data collection
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description