1Y1B

Solution structure of Anemonia elastase inhibitor


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural and Functional Study of an Anemonia Elastase Inhibitor, a "Nonclassical" Kazal-Type Inhibitor from Anemonia sulcata

Hemmi, H.Kumazaki, T.Yoshizawa-Kumagaye, K.Nishiuchi, Y.Yoshida, T.Ohkubo, T.Kobayashi, Y.

(2005) Biochemistry 44: 9626-9636

  • DOI: 10.1021/bi0472806
  • Primary Citation of Related Structures:  
    1Y1C, 1Y1B

  • PubMed Abstract: 
  • Anemonia elastase inhibitor (AEI) is a "nonclassical" Kazal-type elastase inhibitor from Anemonia sulcata. Unlike many nonclassical inhibitors, AEI does not have a cystine-stabilized alpha-helical (CSH) motif in the sequence. We chemically synthesized AEI and determined its three-dimensional solution structure by two-dimensional NMR spectroscopy ...

    Anemonia elastase inhibitor (AEI) is a "nonclassical" Kazal-type elastase inhibitor from Anemonia sulcata. Unlike many nonclassical inhibitors, AEI does not have a cystine-stabilized alpha-helical (CSH) motif in the sequence. We chemically synthesized AEI and determined its three-dimensional solution structure by two-dimensional NMR spectroscopy. The resulting structure of AEI was characterized by a central alpha-helix and a three-stranded antiparallel beta-sheet of a typical Kazal-type inhibitor such as silver pheasant ovomucoid third domain (OMSVP3), even though the first and fifth half-cystine residues forming a disulfide bond in AEI are shifted both toward the C-terminus in comparison with those of OMSVP3. Synthesized AEI exhibited unexpected strong inhibition toward Streptomyces griseus protease B (SGPB). Our previous study [Hemmi, H., et al. (2003) Biochemistry 42, 2524-2534] demonstrated that the site-specific introduction of the engineered disulfide bond into the OMSVP3 molecule to form the CSH motif could produce an inhibitor with a narrower specificity. Thus, the CSH motif-containing derivative of AEI (AEI analogue) was chemically synthesized when a Cys(4)-Cys(34) bond was changed to a Cys(6)-Cys(31) bond. The AEI analogue scarcely inhibited porcine pancreatic elastase (PPE), even though it exhibited almost the same potent inhibitory activity toward SGPB. For the molecular scaffold, essentially no structural difference was detected between the two, but the N-terminal loop from Pro(5) to Ile(7) near the putative reactive site (Met(10)-Gln(11)) in the analogue moved by 3.7 A toward the central helix to form the introduced Cys(6)-Cys(31) bond. Such a conformational change in the restricted region correlates with the specificity change of the inhibitor.


    Organizational Affiliation

    National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Elastase inhibitor A48N/AMutation(s): 0 
Find proteins for P16895 (Anemonia sulcata)
Explore P16895 
Go to UniProtKB:  P16895
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • OLDERADO: 1Y1B Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-07-19
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance