1IE4

RAT TRANSTHYRETIN COMPLEX WITH THYROXINE (T4)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.275 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.209 

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history


Literature

Structure of rat transthyretin (rTTR) complex with thyroxine at 2.5 A resolution: first non-biased insight into thyroxine binding reveals different hormone orientation in two binding sites.

Wojtczak, A.Cody, V.Luft, J.R.Pangborn, W.

(2001) Acta Crystallogr D Biol Crystallogr 57: 1061-1070

  • DOI: https://doi.org/10.1107/s0907444901007235
  • Primary Citation of Related Structures:  
    1IE4

  • PubMed Abstract: 

    The first observation of the unique environment for thyroxine (T(4)) binding in tetrameric rat transthyretin (rTTR) is reported as determined by X-ray diffraction. These data revealed different modes of hormone binding in the two unique hormone-binding sites in the rat TTR tetramer channel. Differences in the orientation of thyroxine and the position of water molecules in the two binding sites further suggest a mechanism for the docking pathway of the hormone into the channel of TTR. Crystals of the rat transthyretin-thyroxine complex are isomorphous with those reported for apo rTTR and crystallized in the tetragonal space group P4(3)2(1)2 with four independent TTR monomeric subunits in the asymmetric part of the crystal lattice. Data were collected to 2.5 A resolution and the structure was refined to R = 20.9% for 15 384 data in the resolution range 12-2.5 A. Similar to human TTR, the rat protein is also a 54 000 Da tetramer with four identical polypeptide chains of 127 amino-acid residues. Of the 22 amino-acid residues which differ between the human and rat sequences, none are in the thyroxine-binding domains. Analysis of these structural data reveals that the tertiary structure is similar to that of hTTR, with only small differences in the flexible loop regions on the surface of the structure. Conformational changes of the amino acids in the channel result in a hydrogen-bonded network that connects the two binding domains, in contrast to the hydrogen bonds formed along the tetramer interface in the apo transthyretin structure. These changes suggest a mechanism for the signal transmission between thyroxine-binding domains.


  • Organizational Affiliation

    Institute of Chemistry, Nicolas Copernicus University, 87-100 Torun, Poland.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
TRANSTHYRETIN
A, B, C, D
127Rattus norvegicusMutation(s): 0 
UniProt
Find proteins for P02767 (Rattus norvegicus)
Explore P02767 
Go to UniProtKB:  P02767
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP02767
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
T44
Query on T44

Download Ideal Coordinates CCD File 
E [auth A],
F [auth B]
3,5,3',5'-TETRAIODO-L-THYRONINE
C15 H11 I4 N O4
XUIIKFGFIJCVMT-LBPRGKRZSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.275 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.209 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 82.526α = 90
b = 82.526β = 90
c = 161.844γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
CNSrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Released Date: 2002-04-10 
  • Deposition Author(s): Wojtczak, A.

Revision History  (Full details and data files)

  • Version 1.0: 2002-04-10
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-10-04
    Changes: Refinement description
  • Version 1.4: 2023-08-09
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 2.0: 2023-11-15
    Changes: Atomic model, Data collection