1FV8

NMR STUDY OF AN HETEROCHIRAL HAIRPIN


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 11 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

NMR study of a heterochiral DNA hairpin:impact of L-enantiomery in the loop.

El Amri, C.Mauffret, O.Santamariar, F.Tevanian, G.Rayner, B.Fermandjian, S.

(2001) J Biomol Struct Dyn 19: 459-470

  • DOI: https://doi.org/10.1080/07391102.2001.10506754
  • Primary Citation of Related Structures:  
    1FV8

  • PubMed Abstract: 

    We carried out a structural study of the DNA heterochiral strand d (AGCTTATCAT(L)CGATAAGCT), -AT(L)C-, where T(L) (L thymine ) replaces T (natural D-thymine). -AT(L)C- is a structural analog of -ATC- that belongs to a strong topoisomerase II DNA cleavage site and which has been shown to resolve into a hairpin structure with a stem formed by eight Waston-Crick base-pairs and a single residue loop closed by an A.C sheared base-pair. Although - AT(L)C-, like its parent -ATC-, folds into a hairpin structure at low and high DNA concentrations it displays a lower stability (Tm of 56 degrees C versus 58.5 degrees C). Several NMR features in -AT(L)C- account for the disruption of the A.C pairing in the loop and a weakening of the C.G base-pair stability at the stem-loop junction. For instance, the exchange of the loop imino protons with solvent is accelerated compared with the natural oligonucleotide -ATC-. The higher flexibility of the heterochiral loop is confirmed by the results of NMR restrained molecular dynamics. In the calculated final structures of -AT(L)C-, the T10(L) residue moves the A9 and C11 residues away, thus preventing the loop closure through a C.A sheared base-pair and the achievement of a good base-base or sugar-base stacking. Actually, most of the stabilizing interactions present in -ATC- are lost in the heterochiral - AT(L)C- explaining its weaker stability.


  • Organizational Affiliation

    Department de Biologie et Pharmacologie Structurales, UMR 8532, CNRS, PR2, Institut Gustave-Roussy, 39, rue Camille-Desmoulins, 94805 Villejuif Cedex, France.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
5'-D(*TP*AP*TP*CP*AP*(0DT)P*CP*GP*AP*TP*A)-3'11N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 11 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-10-11
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-23
    Changes: Data collection, Database references, Derived calculations