1C5I

HYDROGEN BONDING AND CATALYSIS: AN UNEXPECTED EXPLANATION FOR HOW A SINGLE AMINO ACID SUBSTITUTION CAN CHANGE THE PH OPTIMUM OF A GLYCOSIDASE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Work: 0.193 
  • R-Value Observed: 0.193 

wwPDB Validation   3D Report Full Report


This is version 2.2 of the entry. See complete history


Literature

Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.

Joshi, M.D.Sidhu, G.Pot, I.Brayer, G.D.Withers, S.G.McIntosh, L.P.

(2000) J Mol Biol 299: 255-279

  • DOI: https://doi.org/10.1006/jmbi.2000.3722
  • Primary Citation of Related Structures:  
    1C5H, 1C5I

  • PubMed Abstract: 

    The pH optima of family 11 xylanases are well correlated with the nature of the residue adjacent to the acid/base catalyst. In xylanases that function optimally under acidic conditions, this residue is aspartic acid, whereas it is asparagine in those that function under more alkaline conditions. Previous studies of wild-type (WT) Bacillus circulans xylanase (BCX), with an asparagine residue at position 35, demonstrated that its pH-dependent activity follows the ionization states of the nucleophile Glu78 (pKa 4.6) and the acid/base catalyst Glu172 (pKa 6.7). As predicted from sequence comparisons, substitution of this asparagine residue with an aspartic acid residue (N35D BCX) shifts its pH optimum from 5.7 to 4.6, with an approximately 20% increase in activity. The bell-shaped pH-activity profile of this mutant enzyme follows apparent pKa values of 3.5 and 5.8. Based on 13C-NMR titrations, the predominant pKa values of its active-site carboxyl groups are 3.7 (Asp35), 5.7 (Glu78) and 8.4 (Glu172). Thus, in contrast to the WT enzyme, the pH-activity profile of N35D BCX appears to be set by Asp35 and Glu78. Mutational, kinetic, and structural studies of N35D BCX, both in its native and covalently modified 2-fluoro-xylobiosyl glycosyl-enzyme intermediate states, reveal that the xylanase still follows a double-displacement mechanism with Glu78 serving as the nucleophile. We therefore propose that Asp35 and Glu172 function together as the general acid/base catalyst, and that N35D BCX exhibits a "reverse protonation" mechanism in which it is catalytically active when Asp35, with the lower pKa, is protonated, while Glu78, with the higher pKa, is deprotonated. This implies that the mutant enzyme must have an inherent catalytic efficiency at least 100-fold higher than that of the parental WT, because only approximately 1% of its population is in the correct ionization state for catalysis at its pH optimum. The increased efficiency of N35D BCX, and by inference all "acidic" family 11 xylanases, is attributed to the formation of a short (2.7 A) hydrogen bond between Asp35 and Glu172, observed in the crystal structure of the glycosyl-enzyme intermediate of this enzyme, that will substantially stabilize the transition state for glycosyl transfer. Such a mechanism may be much more commonly employed than is generally realized, necessitating careful analysis of the pH-dependence of enzymatic catalysis.


  • Organizational Affiliation

    Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ENDO-1,4-BETA-XYLANASE185Niallia circulansMutation(s): 1 
EC: 3.2.1.8
UniProt
Find proteins for P09850 (Niallia circulans)
Explore P09850 
Go to UniProtKB:  P09850
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP09850
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
beta-D-xylopyranose-(1-4)-1,5-anhydro-2-deoxy-2-fluoro-D-xylitol
B
2N/A
Glycosylation Resources
GlyTouCan:  G11548WD
GlyCosmos:  G11548WD
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Work: 0.193 
  • R-Value Observed: 0.193 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 43.83α = 90
b = 52.74β = 90
c = 78.8γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
DENZOdata reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-05-12
    Type: Initial release
  • Version 1.1: 2007-10-16
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Structure summary
  • Version 2.1: 2021-11-03
    Changes: Database references, Derived calculations, Structure summary
  • Version 2.2: 2023-12-27
    Changes: Data collection