161D

A SINGLE 2'-HYDROXYL GROUP CONVERTS B-DNA TO A-DNA: CRYSTAL STRUCTURE OF THE DNA-RNA CHIMERIC DECAMER DUPLEX D(CCGGC)R(G)D(CCGG) WITH A NOVEL INTERMOLECULAR G.C BASE-PAIRED QUADRUPLET


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Work: 0.136 
  • R-Value Observed: 0.136 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

A single 2'-hydroxyl group converts B-DNA to A-DNA. Crystal structure of the DNA-RNA chimeric decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G-C base-paired quadruplet.

Ban, C.Ramakrishnan, B.Sundaralingam, M.

(1994) J Mol Biol 236: 275-285

  • DOI: https://doi.org/10.1006/jmbi.1994.1134
  • Primary Citation of Related Structures:  
    161D

  • PubMed Abstract: 

    We have found that the introduction of a single 2'-hydroxyl group on the sugar-phosphate backbone of the B-DNA decamer d(CCGGCGCCGG) transforms it to A-DNA. Thus, for the first time the X-ray structures of the same sequence have been observed in both the A and B-DNA conformations, permitting a comparison. Crystals of the DNA-RNA chimeric decamer d(CCGGC)r(G)d(CCGG) belong to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions a = 25.63 A, b = 45.24 A and c = 47.99 A, and one decamer duplex in the asymmetric unit. The structure was solved by a rigid body search using the coordinates of the isomorphous structure d(CCCGGCCGGG) and refined to an R value of 0.136 using 2753 unique reflections at 1.9 A resolution. The final model contains 406 nucleotide atoms and 61 water molecules. The chimeric duplex exhibits typical A-DNA geometry, with all the sugars in the C(3')-endo puckering and the base-pairs inclined and displaced from the helix axis. The 2'-hydroxyl groups on rG6 and rG16 protrude into the minor groove surface and form different types of hydrogen bonds; that on strand 1 forms an intermolecular hydrogen bond with the furanose ring O(4') of a symmetry-related C1 residue, while that on strand 2 is involved in two water bridges. Crystal packing forces the G4-G17 base-pair in the top half of the duplex to slide significantly into the minor groove compared to the corresponding G7-G14 base-pair in the bottom half, resulting in these base-pairs exhibiting different base stacking and intermolecular interactions. The base G4 of the G4-G17 base-pair forms an unorthodox base "triple", G4*(G10-C11), hydrogen-bonding through its minor groove sites N(2) and N(3) to the minor groove atoms N(2) and O(2) of both bases of the G10-C11 base-pair of a symmetry-related molecule. The base G10 of this triple in turn forms a second similar unorthodox base triple, G10*(G3*C18), with the adjacent base-pair G3-C18 of the duplex, thus G10 is involved in a double triple. On the other hand, in the bottom half of the duplex, the C7-G14 base-pair is involved only in a single similar unorthodox base triple with G20, (C7-G14)*G20, while the adjacent base-pair rG6-C15 is involved in a novel quadruple with C1-G20, (rG6-C15) *(C1-G20), where the latter base-pairs are hydrogen-bonded to each other via the minor groove sites G(N(2))...C(O(2)).(ABSTRACT TRUNCATED AT 400 WORDS)


  • Organizational Affiliation

    Department of Chemistry, Ohio State University, Columbus 43210.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
DNA/RNA (5'-D(*CP*CP*GP*GP*CP*)-R(*GP*)-D(*CP*CP*GP*G)-3')
A, B
10N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Work: 0.136 
  • R-Value Observed: 0.136 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 26.63α = 90
b = 45.24β = 90
c = 47.99γ = 90
Software Package:
Software NamePurpose
X-PLORrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1994-05-18
    Type: Initial release
  • Version 1.1: 2008-05-22
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-07
    Changes: Data collection, Database references