Narbonolide/10-deoxymethynolide synthase PikA4, module 6 - Q9ZGI2 (PIKA4_STRVZ)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for Q9ZGI2: 8
Involved in the biosynthesis of 12- and 14-membered ring macrolactone antibiotics such as methymycin and neomethymycin, and pikromycin and narbomycin, respectively. Component of the pikromycin PKS which catalyzes the biosynthesis of both precursors 10-deoxymethynolide (12-membered ring macrolactone) and narbonolide (14-membered ring macrolactone). Chain elongation through PikAI, PikAII and PikAIII followed by thioesterase catalyzed termination results in the production of 10-deoxymethynolide, while continued elongation through PikAIV, followed by thioesterase (TE) catalyzed cyclization results in the biosynthesis of the narbonolide. The thioesterase can use a series of diketide-N-acetylcysteamine (SNAC) thioesters, but has a strong preference for the 2-methyl-3-ketopentanoyl-SNAC over the stereoisomers of 2-methyl-3-hydroxyacyl-SNAC (PubMed:12379101, PubMed:12733905). UniProt
Catalytic Activity
Malonyl-CoA + 6 2S-methylmalonyl-CoA + 5 NADPH = narbonolide + 7 CoA + 7 CO2 + 5 NADP+ + 2 H2O. UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Homodimer (PubMed:12379102, PubMed:16969373, PubMed:16969372, PubMed:19146481). Pikromycin PKS consists of a combination of multimodular (PikAI and PikAII) and monomodular (PikAIII and PikAIV) polypeptides each coding for a functional synthase subunit which participates in 1 (monomodular) or 2 (multimodular) of the six FAS-like elongation steps required for formation of the polyketide. Module 1, 2, 3, 4, 5, and 6 participating in biosynthesis steps 1, 2, 3, 4, 5, and 6, respectively. UniProt
Cells lacking the TE domain are unable to produce methymycin, neomethymycin, narbomycin and pikromycin. UniProt
  • Other Gene names: pikAIV
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.