Crotamine - Q9PWF3 (MYC2_CRODU)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for Q9PWF3: 3
Cationic peptide that possesses multiple functions. It acts as a cell-penetrating peptide (CPP), and as a potent voltage-gated potassium channel inhibitor. It exhibits antimicrobial activities, hind limb paralysis, and severe muscle necrosis by a non-enzymatic mechanism. As a cell-penetrating peptide, crotamine has high specificity for actively proliferating cells, and interacts inside the cell with subcellular and subnuclear structures, like vesicular compartments, chromosomes and centrioles. It penetrates into the cells as fast as five minutes after its addition to cell culture medium (PubMed:18662711). In vivo, after intraperitoneal administration, it is found in cells of peritoneal fluid and bone marrow, demonstrating preferential nuclear and perinuclear localization. To enter the cell, it interacts with the chains of heparan sulfate membrane proteoglycan (HSPG), and is endocytosed (in complex with HSPG) in vesicles which are transported into the cell with the help of clathrin. Inside the cell, crotamine accumulates in lysosomal vesicles. As soon as the peptide accumulates in endosomes/lysosomes vesicles, these compartments are disrupted and their contents released into the cytosol. This loss of lysosomal content induces cell death at high concentrations, or promotes the distribution of crotamine in cytoplasmic compartments, which is a step before crotamine nuclear uptake (PubMed:15231729, PubMed:17491023). As a potassium channel inhibitor, this toxin selectively inhibits Kv1.1/KCNA1, Kv1.2/KCNA2 and Kv1.3/KCNA3 channels with an IC(50) of 369, 386 and 287 nM, respectively (PubMed:22498659). The inhibition of Kv1.3/KCNA channels induced by this toxin occurs rapidly and is voltage-independent. The channel inhibition is reversible after washing, suggesting a pure and classical channel blockage effect, without effects in potassium channel kinetics (PubMed:22498659). As an antimicrobial peptide, crotamine shows antibacterial activity against E.coli and B.subtilis, and antifungal activity against Candida spp., Trichosporon spp. and C.neoformans. It kills bacteria through membrane permeabilization. UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Monomer. UniProt
  • Organism: South American rattlesnake
  • Length:
  • UniProt
  • Other Gene names: CRO2, CRT-P1
This protein in other organisms (by gene name):
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.