Na(+)/H(+) exchange regulatory cofactor NHE-RF3 - Q9JIL4 (NHRF3_MOUSE)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for Q9JIL4: 7
A scaffold protein that connects plasma membrane proteins and regulatory components, regulating their surface expression in epithelial cells apical domains. May be involved in the coordination of a diverse range of regulatory processes for ion transport and second messenger cascades. In complex with SLC9A3R1, may cluster proteins that are functionally dependent in a mutual fashion and modulate the trafficking and the activity of the associated membrane proteins. May play a role in the cellular mechanisms associated with multidrug resistance through its interaction with ABCC2 and PDZK1IP1. May potentiate the CFTR chloride channel activity (By similarity). Required for normal cell-surface expression of SCARB1. Plays a role in maintaining normal plasma cholesterol levels via its effects on SCARB1. Plays a role in the normal localization and function of the chloride-anion exchanger SLC26A6 to the plasma membrane in the brush border of the proximal tubule of the kidney. May be involved in the regulation of proximal tubular Na(+)-dependent inorganic phosphate cotransport therefore playing an important role in tubule function. (data source: UniProt  )
Subunit structure
Interacts with PDZK1IP1 and ABCC2. Binds to the C-terminal region of SLC26A3. Interacts (via C-terminal PDZ domain) with SLC26A6 (via C-terminal domain). Interacts (via C-terminal PDZ domain) with SLC9A3 (via C-terminal domain) (By similarity). Component of a complex, composed of PDZK1, SYNGAP1, KLHL17 and NMDA receptors. Interacts (via PDZ1 domain) directly with KLHL17; the interaction is important for integrity of actin cytoskeleton structures in neurons (By similarity). Forms a heterodimeric complex with SLC9A3R1. Interacts with AKAP2, BCR, CFTR, SLCO1A1, SLC22A12, SLC22A4, SLC22A5, SLC26A6, SLC9A3R2 and SLC17A1. Interacts (via the first PDZ domain) with PTGIR (via non-isoprenylated C-terminus). Interacts (via PDZ domains 1 and 3) with SCARB1 (C-terminal domain). (data source: UniProt  )
The PDZ 2 and 4 domains do not interact with the C-terminal region of SCARB1. (data source: UniProt  )
Organism (common name): Mouse
Other Gene names: Pdzk1 Cap70 Nherf3
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the terminus of a PDB sequence. To get more information about the meaning and exact position of a sequence modification, move your mouse over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.