Non-structural maintenance of chromosomes element 1 homolog - Q8WV22 (NSE1_HUMAN)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for Q8WV22: 3
 
Function
RING-type zinc finger-containing E3 ubiquitin ligase that assembles with melanoma antigen protein (MAGE) to catalyze the direct transfer of ubiquitin from E2 ubiquitin-conjugating enzyme to a specific substrate. Within MAGE-RING ubiquitin ligase complex, MAGE stimulates and specifies ubiquitin ligase activity likely through recruitment and/or stabilization of the E2 ubiquitin-conjugating enzyme at the E3:substrate complex. Involved in maintenance of genome integrity, DNA damage response and DNA repair (PubMed:29225034, PubMed:20864041). NSMCE3/MAGEG1 and NSMCE1 ubiquitin ligase are components of SMC5-SMC6 complex and may positively regulate homologous recombination-mediated DNA repair (PubMed:18086888). MAGEF1-NSMCE1 ubiquitin ligase promotes proteasomal degradation of MMS19, a key component of the cytosolic iron-sulfur protein assembly (CIA) machinery. Down-regulation of MMS19 impairs the activity of several DNA repair and metabolism enzymes such as ERCC2/XPD, FANCJ, RTEL1 and POLD1 that require iron-sulfur clusters as cofactors (PubMed:29225034). UniProt
Catalytic Activity
S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + N6-ubiquitinyl-[acceptor protein]-L-lysine. UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Component of the SMC5-SMC6 complex which consists at least of SMC5, SMC6, NSMCE2, NSMCE1, NSMCE4A or EID3 and NSMCE3. NSMCE1, NSMCE4A or EID3 and NSMCE3 probably form a subcomplex that bridges the head domains of the SMC5-SMC6 heterodimer (PubMed:18086888, PubMed:20864041). Interacts with NSMCE3 (PubMed:27427983). Interacts with MAGEF1 (PubMed:29225034). UniProt
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.