E3 ubiquitin-protein ligase RNF139 - Q8WU17 (RN139_HUMAN)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

 
Function
E3-ubiquitin ligase; acts as a negative regulator of the cell proliferation through mechanisms involving G2/M arrest and cell death. Required for MHC class I ubiquitination in cells expressing the cytomegalovirus protein US2 before dislocation from the endoplasmic reticulum (ER). Affects SREBP processing by hindering the SREBP/SCAP complex translocation from the ER to the Golgi, thereby reducing SREBF2 target gene expression. Required for INSIG1 ubiquitination. May be required for EIF3 complex ubiquitination. May function as a signaling receptor. UniProt
Catalytic Activity
S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + N6-ubiquitinyl-[acceptor protein]-L-lysine. UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Interacts with MHC class I and HM13 (PubMed:19720873, PubMed:25239945). Interacts with VHL. Component of SCAP/SREBP complex composed of SREBF2, SCAP and RNF139; the complex hampers the interaction between SCAP and SEC24B, thereby reducing SREBF2 proteolytic processing. Interacts with SREBF2 (via C-terminal domain). Interacts with SCAP; the interaction inhibits the interaction of SCAP with SEC24B and hampering the ER to Golgi transport of the SCAP/SREBP complex. Interacts with SEC24B. Interacts with INSIG1 and INSIG2. Interacts with EIF3F and EIF3H; the interaction leads to protein translation inhibitions in a ubiquitination-dependent manner (PubMed:12032852, PubMed:19706601, PubMed:20068067). Interacts with XBP1 isoform 1; the interaction induces ubiquitination and degradation of XBP1 isoform 1 (PubMed:25239945). UniProt
Domain
The RING-type zinc finger domain mediates ubiquitin ligase activity. UniProt
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.