Piwi-like protein 2 - Q8CDG1 (PIWL2_MOUSE)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for Q8CDG1: 1
 
Function
Plays a central role during spermatogenesis by repressing transposable elements and preventing their mobilization, which is essential for the germline integrity. Plays an essential role in meiotic differentiation of spermatocytes, germ cell differentiation and in self-renewal of spermatogonial stem cells. Its presence in oocytes suggests that it may participate in similar functions during oogenesis in females. Acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and govern the methylation and subsequent repression of transposons. Directly binds piRNAs, a class of 24 to 30 nucleotide RNAs that are generated by a Dicer-independent mechanism and are primarily derived from transposons and other repeated sequence elements. Associates with primary piRNAs in the cytoplasm and is required for PIWIL4/MIWI2 nuclear localization and association with secondary piRNAs antisense. The piRNA process acts upstream of known mediators of DNA methylation. Participates in a piRNA amplification loop. Besides their function in transposable elements repression, piRNAs are probably involved in other processes during meiosis such as translation regulation. Indirectly modulates expression of genes such as PDGFRB, SLC2A1, ITGA6, GJA7, THY1, CD9 and STRA8. Inhibits tumor cell growth when repressed. When overexpressed, acts as an oncogene by inhibition of apoptosis and promotion of proliferation in tumors. UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Interacts with DDX4, MAEL, EIF3A, EIF4E, EIF4G, PRMT5 and WDR77. Associates with EIF4E- and EIF4G-containing m7G cap-binding complexes. Interacts (when methylated on arginine residues) with TDRD1 and TDRKH/TDRD2. Interacts with TDRD12. UniProt
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.