Retinoblastoma-binding protein 5 - Q8BX09 (RBBP5_MOUSE)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for Q8BX09: 2
 
Function
As part of the MLL1/MLL complex, involved in mono-, di- and trimethylation at 'Lys-4' of histone H3. Histone H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. In embryonic stem (ES) cells, plays a crucial role in the differentiation potential, particularly along the neural lineage, regulating gene induction and H3 'Lys-4' methylation at key developmental loci, including that mediated by retinoic acid. Does not affect ES cell self-renewal. UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Component of the SET1 complex, at least composed of the catalytic subunit (SETD1A or SETD1B), WDR5, WDR82, RBBP5, ASH2L/ASH2, CXXC1/CFP1, CFC1 and DPY30 (By similarity). Interacts with WDR82 and SETD1A (By similarity). Part of a complex composed at least of ASCL2, EMSY, HCFC1, HSPA8, CCAR2, MATR3, MKI67, RBBP5, TUBB2A, WDR5 and ZNF335; this complex may have a histone H3-specific methyltransferase activity (By similarity). Core component of several methyltransferase-containing complexes including MLL1/MLL, MLL2/3 (also named ASCOM complex) and MLL4/WBP7. Each complex is at least composed of ASH2L, RBBP5, DPY30, WDR5, one or more specific histone methyltransferases (KMT2A/MLL1, KMT2D/MLL2, KMT2C/MLL3 and KMT2B/MLL4), and the facultative components PAGR1, BAP18, CHD8, E2F6, HCFC1, HCFC2, HSP70, INO80C, KDM6A, KANSL1, LAS1L, MAX, MCRS1, MEN1, MGA, MYST1/MOF, NCOA6, PAXIP1/PTIP, PELP1, PHF20, PRP31, RING2, RUVB1/TIP49A, RUVB2/TIP49B, SENP3, TAF1, TAF4, TAF6, TAF7, TAF9, TEX10 and alpha- and beta-tubulin. Interacts with ZNF335. UniProt
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.