Stimulator of interferon genes protein - Q86WV6 (STING_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Number of PDB entries for Q86WV6: 17
Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes the production of type I interferon (IFN-alpha and IFN-beta). Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm. Acts by recognizing and binding cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, and cyclic GMP-AMP (cGAMP), a messenger produced in response to DNA virus in the cytosol: upon binding of c-di-GMP or cGAMP, autoinhibition is alleviated and TMEM173/STING is able to activate both NF-kappa-B and IRF3 transcription pathways to induce expression of type I interferon and exert a potent anti-viral state. May be involved in translocon function, the translocon possibly being able to influence the induction of type I interferons. May be involved in transduction of apoptotic signals via its association with the major histocompatibility complex class II (MHC-II). Mediates death signaling via activation of the extracellular signal-regulated kinase (ERK) pathway. Essential for the induction of IFN-beta in response to human herpes simplex virus 1 (HHV-1) infection. (data source: UniProt  )
Subunit structure
Associates with the MHC-II complex (By similarity). Homodimer; 'Lys-63'-linked ubiquitination at Lys-150 is required for homodimerization. Interacts with DDX58/RIG-I, MAVS and SSR2. Interacts with RNF5 and TRIM56. Interacts with TBK1; when homodimer, leading to subsequent production of IFN-beta. Interacts with IFIT1 and IFIT2. (data source: UniProt  )
The c-di-GMP-binding domain (CBD) forms a homodimer via hydrophobic interactions and binds both the cyclic diguanylate monophosphate (c-di-GMP) and the cyclic GMP-AMP (cGAMP) messengers. In absence of c-di-GMP or cGAMP, the protein is autoinhibited by an intramolecular interaction between the CBD and the C-terminal tail (CTT). Binding of c-di-GMP or cGAMP to the CBD releases the autoinhibition by displacing the CTT, leading to activate both NF-kappa-B and IRF3 transcription pathways to induce expression of type I interferon. The N-terminal part of the CBD region was initially though to contain a fifth transmembrane region (TM5) but is part of the folded, soluble CBD (PubMed:22579474, PubMed:22705373, PubMed:22728658, PubMed:22728660 and PubMed:22728659). (data source: UniProt  )
Gene names: Gene View for TMEM173 ERIS MITA STING
Display Options
Sort by
Color by

The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.

Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  

The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).