Protein Vpr - Q73369 (VPR_HV1B9)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for Q73369: 6
 
Function
During virus replication, may deplete host UNG protein, and incude G2-M cell cycle arrest. Acts by targeting specific host proteins for degradation by the 26S proteasome, through association with the cellular CUL4A-DDB1 E3 ligase complex by direct interaction with host VPRPB/DCAF-1. Cell cycle arrest reportedly occurs within hours of infection and is not blocked by antiviral agents, suggesting that it is initiated by the VPR carried into the virion. Additionally, VPR induces apoptosis in a cell cycle dependent manner suggesting that these two effects are mechanistically linked. Detected in the serum and cerebrospinal fluid of AIDS patient, VPR may also induce cell death to bystander cells. UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Homooligomer, may form homodimer. Interacts with p6-gag region of the Pr55 Gag precursor protein through a (Leu-X-X)4 motif near the C-terminus of the P6gag protein. Interacts with host UNG. May interact with host RAD23A/HHR23A. Interacts with host VPRBP/DCAF1, leading to hijack the CUL4A-RBX1-DDB1-DCAF1/VPRBP complex, mediating ubiquitination of host proteins such as TERT and ZGPAT and arrest of the cell cycle in G2 phase. UniProt
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.