Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase - Q1PIV4 (Q1PIV4_9POXV)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for Q1PIV4: 1
 
Function
Displays methyltransferase, positive regulation of the poly(A) polymerase and transcription elongation activities. Involved in the modification of both mRNA ends and in intermediate and late gene positive transcription elongation. At the mRNAs 5' end, methylates the ribose 2' OH group of the first transcribed nucleotide, thereby producing a 2'-O-methylpurine cap. At the 3' end, functions as a processivity factor which stimulates the activity of the viral poly(A) polymerase VP55 that creates mRNA's poly(A) tail. In the presence of VP39, VP55 does not dissociate from the RNA allowing tail elongation to around 250 adenylates. UniProt
Catalytic Activity
S-adenosyl-L-methionine + a 5'-N7-methyl 5'-triphosphoguanosine-purine-ribonucleotide-[mRNA] = S-adenosyl-L-homocysteine + a 5'-N7-methyl 5'-triphosphoguanosine-2'-O-methyl-purine-ribonucleotide-[mRNA]. UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Methyltransferase activity: Monomer, poly(A) polymerase activity: Heterodimer composed of a catalytic component, VP55, and a processivity factor, VP39. UniProt
  • Other Gene names: VAC_DPP10_106, VAC_DPP12_106, VAC_DPP13_106, VAC_DPP15_106, VAC_DPP16_106, VAC_DPP17_106, VAC_DPP19_106, VAC_DPP20_106, VAC_DPP21_106, VAC_DPP9_106, VACAC2_106, VACCL3_106, VACV-DUKE-103, VACV_091, VACV_TT12_115
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.