POU domain, class 4, transcription factor 2 - Q12837 (PO4F2_HUMAN)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

 
Function
Tissue-specific DNA-binding transcription factor involved in the development and differentiation of target cells (PubMed:19266028, PubMed:23805044). Functions either as activator or repressor modulating the rate of target gene transcription through RNA polymerase II enzyme in a promoter-dependent manner (PubMed:19266028, PubMed:23805044). Binds to the consensus octamer motif 5'-AT[A/T]A[T/A]T[A/T]A-3' of promoter of target genes. Plays a fundamental role in the gene regulatory network essential for retinal ganglion cell (RGC) differentiation. Binds to an octamer site to form a ternary complex with ISL1; cooperates positively with ISL1 and ISL2 to potentiate transcriptional activation of RGC target genes being involved in RGC fate commitment in the developing retina and RGC axon formation and pathfinding. Inhibits DLX1 and DLX2 transcriptional activities preventing DLX1- and DLX2-mediated ability to promote amacrine cell fate specification. In cooperation with TP53 potentiates transcriptional activation of BAX promoter activity increasing neuronal cell apoptosis. Negatively regulates BAX promoter activity in the absence of TP53. Acts as a transcriptional coactivator via its interaction with the transcription factor ESR1 by enhancing its effect on estrogen response element (ERE)-containing promoter. Antagonizes the transcriptional stimulatory activity of POU4F1 by preventing its binding to an octamer motif. Involved in TNFSF11-mediated terminal osteoclast differentiation (By similarity). UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Interacts with POU4F1; this interaction inhibits both POU4F1 DNA-binding and transcriptional activities. Interacts (C-terminus) with ESR1 (via DNA-binding domain); this interaction increases the estrogen receptor ESR1 transcriptional activity in a DNA- and ligand 17-beta-estradiol-independent manner. Interacts (via C-terminus) with TP53 (via N-terminus). Interacts with DLX1 (via homeobox DNA-binding domain); this interaction suppresses DLX1-mediated transcriptional activity in postnatal retina enhancing retinal ganglion cell (RGC) differentiation. Interacts with DLX2 (via homeobox DNA-binding domain); this interaction enhances RGC differentiation. Interacts (via C-terminus) with ISL1 (via C-terminus). Interacts with ISL2. Interacts with LHX2. UniProt
Domain
The polyhistidine motif acts as a targeting signal to nuclear speckles. UniProt
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.