Anaphase-promoting complex subunit 2 - Q12440 (APC2_YEAST)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for Q12440: 1
 
Function
Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin-protein ligase complex that controls progression through mitosis and the G1 phase of the cell cycle. The APC/C is thought to confer substrate specificity and, in the presence of ubiquitin-conjugating E2 enzymes, it catalyzes the formation of protein-ubiquitin conjugates that are subsequently degraded by the 26S proteasome. In early mitosis, the APC/C is activated by CDC20 and targets securin PDS1, the B-type cyclin CLB5, and other anaphase inhibitory proteins for proteolysis, thereby triggering the separation of sister chromatids at the metaphase-to-anaphase transition. In late mitosis and in G1, degradation of CLB5 allows activation of the APC/C by CDH1, which is needed to destroy CDC20 and the B-type cyclin CLB2 to allow exit from mitosis and creating the low CDK state necessary for cytokinesis and for reforming prereplicative complexes in G1 prior to another round of replication. UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
The APC/C is composed of at least 13 subunits that stay tightly associated throughout the cell cycle: APC1, APC2, APC4, APC5, APC9, APC11, CDC16, CDC23, CDC26, CDC27, DOC1, MND2 and SWM1. APC2 interacts directly with APC11 thereby anchoring APC11 to the core complex. UniProt
  • Organism: Baker's yeast
  • Length:
  • UniProt
  • Other Gene names: APC2, RSI1, YLR127C, L3105, L3108
This protein in other organisms (by gene name):
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.