Protein transport protein SEC13 - Q04491 (SEC13_YEAST)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for Q04491: 12
Functions as a component of the nuclear pore complex (NPC) and the COPII coat. It is one of 5 proteins constituting the COPII coat, which is involved in anterograde (ER to Golgi) double-membrane transport vesicle formation. First the small GTPase SAR1, activated by and binding to the integral ER membrane protein SEC12, exchanges GDP for GTP and recruits the heterodimer SEC23/24, which in turn recruits the heterotetramer SEC13-SEC31. The polymerization of COPII coat complexes then causes physically the deformation (budding) of the membrane, leading to the creation of a transport vesicle. The COPII complex is dissociated upon SAR1-GTP hydrolysis to SAR1-GDP. SEC23 functions as the SAR1 GTPase activating protein, whose activity is stimulated in the presence of SEC13/31. SEC13 is directly or indirectly required for normal ER membrane and nuclear envelope morphology. It also functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. SEC13 is required for efficient mRNA export from the nucleus to the cytoplasm and for correct nuclear pore biogenesis and distribution. Component of the SEA complex which coats the vacuolar membrane and is involved in intracellular trafficking, autophagy, response to nitrogen starvation, and amino acid biogenesis. UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
The basic repeat unit of a COPII coated vesicle is composed of 5 proteins: the small GTPase SAR1, the heterodimeric SEC23-SEC24 complex, and the heterotetrameric SEC13-SEC31 complex. This repeat unit polymerizes to induce membrane deformation into a transport vesicle. The nuclear pore complex (NPC) constitutes the exclusive means of nucleocytoplasmic transport. NPCs allow the passive diffusion of ions and small molecules and the active, nuclear transport receptor-mediated bidirectional transport of macromolecules such as proteins, RNAs, ribonucleoparticles (RNPs), and ribosomal subunits across the nuclear envelope. The 55-60 MDa NPC is composed of at least 31 different subunits: ASM4, CDC31, GLE1, GLE2, NDC1, NIC96, NSP1, NUP1, NUP2, NUP100, NUP116, NUP120, NUP133, NUP145, NUP157, NUP159, NUP170, NUP188, NUP192, NUP42, NUP49, NUP53, NUP57, NUP60, NUP82, NUP84, NUP85, POM152, POM34, SEC13 and SEH1. Due to its 8-fold rotational symmetry, all subunits are present with 8 copies or multiples thereof. SEC13 is part of the heptameric 0.5 MDa autoassembling NUP84 NPC subcomplex (NUP84, NUP85, NUP120, NUP133, NUP145C, SEC13 and SEH1). Component of the SEA complex composed of at least IML1/SEA1, RTC1/SEA2, MTC5/SEA3, NPR2, NPR3, SEA4, SEC13 and SEH1. UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.