POP-OUT | CLOSE
 

50S ribosomal protein L5 - P62399 (RL5_ECOLI)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Number of PDB entries for P62399: 106
 
Function
This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. Its 5S rRNA binding is significantly enhanced in the presence of L18. (data source: UniProt  )
In the 70S ribosome in the initiation state (PubMed:12809609) was modeled to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; the protein-protein contacts between S13 and L5 in B1b change in the model with bound EF-G implicating this bridge in subunit movement (PubMed:12809609 and PubMed:18723842). In the two 3.5 A resolved ribosome structures (PubMed:16272117) the contacts between L5, S13 and S19 are different, confirming the dynamic nature of this interaction. (data source: UniProt  )
Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (data source: UniProt  )
Subunit structure
Part of the 50S ribosomal subunit; part of the 5S rRNA/L5/L18/L25 subcomplex. Contacts the 5S rRNA; cross-links to the P site tRNA. Forms a bridge to the 30S subunit in the 70S ribosome, contacting protein S13 and S19. (data source: UniProt  )
UniProtKB:
Species: 
Gene names: rplE b3308 JW3270
Length:
Display Options
Zoom
min
max
Sort by
Color by
 
Legend

The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.

Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  

The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).