Elongator complex protein 2 - P42935 (ELP2_YEAST)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for P42935: 2
Acts as component of the RNA polymerase II elongator complex, which is a major histone acetyltransferase component of the RNA polymerase II (RNAPII) holoenzyme and is involved in transcriptional elongation. Association with elongating RNAPII requires a hyperphosphorylated state of the RNAPII C-terminal domain (CTD). Elongator binds to both naked and nucleosomal DNA, can acetylate both core and nucleosomal histones, and is involved in chromatin remodeling. It acetylates histones H3, preferentially at 'Lys-14', and H4, preferentially at 'Lys-8'. It functions as a gamma-toxin target (TOT); disruption of the complex confers resistance to Kluyveromyces lactis toxin zymocin (pGKL1 killer toxin). May also be involved in sensitiviy to Pichia inositovora toxin. May be involved in tRNA modification. ELP2 is dispensable for the complex integrity and, in vitro, is not required for complex HAT activity. It is not required for the association of the complex with nascent RNA transcript. Independently, ELP2 may be involved in polarized exocytosis. Is required for an early step in synthesis of 5-methoxycarbonylmethyl (mcm5) and 5-carbamoylmethyl (ncm5) groups present on uridines at the wobble position in tRNA. UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Component of the RNA polymerase II elongator complex, which consists of IKI3, ELP2, ELP3, ELP4, IKI1 and ELP6. IKI3, ELP2, and ELP3 form the elongator core complex. In the complex, ELP2 interacts with IKI3. UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.