Replication factor C subunit 4 - P40339 (RFC4_YEAST)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for P40339: 1
 
Function
Component of ATP-dependent clamp loader (RFC and RFC-like) complexes for DNA clamps, such as the POL30/PCNA homotrimer and the checkpoint clamp DDC1:MEC3:RAD17 complex. During a clamp loading circle, the RFC:clamp complex binds to DNA and the recognition of the double-stranded/single-stranded junction stimulates ATP hydrolysis by RFC. The complex presumably provides bipartite ATP sites in which one subunit supplies a catalytic site for hydrolysis of ATP bound to the neighboring subunit. Dissociation of RFC from the clamp leaves the clamp encircling DNA. Component of the replication factor C (RFC or activator 1) complex which loads POL30/PCNA and acts during elongation of primed DNA templates by DNA polymerase delta and epsilon. RFC has an essential but redundant activity in sister chromatid cohesion establishment. Component of the RFC-like complex CTF18-RFC which is required for efficient establishment of chromosome cohesion during S-phase and may load or unload POL30/PCNA. Component of the RFC-like RAD24-RFC complex which loads the checkpoint clamp DDC1:MEC3:RAD17 complex and is involved in DNA repair pathways. Component of the RFC-like ELG1-RFC complex which appears to have a role in DNA replication, replication fork re-start, recombination and repair. UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Replication factor C (RFC) is a heteropentamer of subunits RFC1, RFC2, RFC3, RFC4 and RFC5 and forms a complex with POL30/PCNA in the presence of ATP. Component of the RAD24-RFC complex which consists of RAD14, RFC2, RFC3, RFC4 and RFC5 and associates with the checkpoint clamp DDC1:MEC3:RAD17 complex. Component of the ELG1-RFC complex which consists of ELG1, RFC2, RFC3, RFC4 and RFC5. Component of the CTF18-RFC complex, which consists of CTF18, CTF8, DCC1, RFC2, RFC3, RFC4 and RFC5. RFC4 interacts with ECO1. UniProt
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.