Serine/threonine-protein kinase TOR1 - P35169 (TOR1_YEAST)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for P35169: 3
Phosphatidylinositol 3-kinase homolog, component of TORC1, which regulates multiple cellular processes to control cell growth in response to environmental signals. Nutrient limitation and environmental stress signals cause inactivation of TORC1. Active TORC1 positively controls ribosome biogenesis via control of rRNA, ribosomal protein and tRNA gene expression, and rRNA processing. TORC1 positively controls protein biosynthesis by regulation of mRNA stability, translation initiation factor activity, and high-affinity amino acid permeases that serve to provide amino acids for use by the translation machinery. TORC1 also promotes growth by sequestering a number of nutrient and general stress-responsive transcription factors in the cytoplasm. TORC1 negatively controls macroautophagy, a process to recycle surplus cytoplasmic mass under nutrient starvation conditions. TORC1 controls many of these processes via TIP41-TAP42-mediated inhibition of the type 2A-related phosphatases PP2A and SIT4 (PubMed:10198052, PubMed:10329624, PubMed:10604478, PubMed:10995454, PubMed:11741537, PubMed:15620355, PubMed:7606777, PubMed:8741837, PubMed:9539725, PubMed:9843498). In nutrient rich conditions, responsible for the phosphorylation of AGC S6 kinase (S6K) YPK3, activating YPK3 kinase activity and promoting phosphorylation of ribosomal protein S6 (PubMed:25767889). Phosphorylates kinase SCH9 at 6 amino acids in the C-terminus, activating SCH9 kinase activity to properly regulate ribosome biogenesis, translation initiation, and entry into stationary phase (PubMed:17560372). UniProt
Catalytic Activity
ATP + a protein = ADP + a phosphoprotein. UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
The target of rapamycin complex 1 (TORC1) is composed of at least KOG1, LST8, TCO89 and either TOR1 (TORC1-A) or TOR2 (TORC1-B). TORC1 binds to and is inhibited by FKBP-rapamycin. UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.