Protein PML - P29590 (PML_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for P29590: 5
Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Key component of PML bodies. PML bodies are formed by the interaction of PML homodimers (via SUMO-binding motif) with sumoylated PML, leading to the assembly of higher oligomers. Several types of PML bodies have been observed. PML bodies can form hollow spheres that can sequester target proteins inside. Interacts (via SUMO-binding motif) with sumoylated proteins. Interacts (via C-terminus) with p53/TP53. Recruits p53/TP53 and CHEK2 into PML bodies, which promotes p53/TP53 phosphorylation at 'Ser-20' and prevents its proteasomal degradation. Interacts with MDM2, and sequesters MDM2 in the nucleolus, thereby preventing ubiquitination of p53/TP53. Interaction with PML-RARA oncoprotein and certain viral proteins causes disassembly of PML bodies and abolishes the normal PML function. Interacts with HIPK2, TERT, SIRT1, TOPBP1, TRIM27 and TRIM69. Interacts with ELF4 (via C-terminus). Interacts with Lassa virus Z protein and rabies virus phosphoprotein. Interacts with ITPR3. Interacts (in the cytoplasm) with TGFBR1, TGFBR2 and PKM. Interacts (via the coiled-coil domain and when sumoylated) with SATB1. Interacts with UBE2I; the interaction is enhanced by arsenic binding. Interacts (PML-RARA oncoprotein, via the coiled-coil domain) with UBE2I; the interaction is enhanced by arsenic binding and is required for PML-RARA oncoprotein sumoylation and inhibition of RARA transactivational activity. Interacts with RB1, PPP1A, SMAD2, SMAD3, DAXX, RPL11 and MTOR. Interacts with PPARGC1A and KAT2A. Interacts with CSNK2A1 and CSNK2A3. Interacts with ANKRD2; the interaction is direct. Interacts (via SUMO-interacting motif) with sumoylated MORC3 (PubMed:20501696). Isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4, isoform PML-5 and isoform PML-6 interact with RNF4. Isoform PML-1 interacts with NLRP3. Isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5 interact with MAGEA2, RBL2, PER2 and E2F4. Isoform PML-2 interacts with CIITA. Isoform PML-2, isoform PML-3 and isoform PML-4 interact with TBX2. Isoform PML-4 interacts with RANBP2, HDAC7, KAT6A, WRN, PIN1, TBX3 and phosphorylated MAPK1/ERK2. Isoform PML-4 interacts with the CTNNB1 and TCF7L2/TCF4 complex. Isoform PML-4 preferentially interacts with MAPK7/BMK1 although other isoforms (isoform PML-1, isoform PML-2, isoform PML-3 and isoform PML-6) also interact with it. Isoform PML-12 interacts with PIAS1, PIAS2 (isoform PIAS2-alpha) and CSNK2A1/CK2. Isoform PML-3 interacts with HFV bel1/tas and bet. Isoform PML-4 interacts with VZV capsid protein VP26/ORF23 capsid protein. Ths sumoylated isoform PML-4 interacts with encephalomyocarditis virus (EMCV) RNA-directed RNA polymerase 3D-POL (P3D-POL). Isoform PML-1 interacts with herpes simplex virus-1 (HHV-1) ICP0. Isoform PML-2 interacts with human adenovirus 2 E1A and this interaction stimulates E1A-dependent transcriptional activation (PubMed:23135708). Isoform PML-6 interacts with moloney murine leukemia virus (MoMLV) integrase (IN) and reverse transcriptase (RT). Isoform PML-4 and isoform PML-5 interact with human adenovirus 5 E1B-55K protein; these interactions promote efficient subnuclear targeting of E1B-55K to PML nuclear bodies (PubMed:20639899, PubMed:25772236). UniProt
The Sumo interaction motif (SIM) is required for efficient ubiquitination, recruitment of proteasome components within PML-NBs and PML degradation in response to arsenic trioxide. UniProt
  • Isoforms: 12 , currently showing only the 'canonical' sequence.
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.