Integrin beta-7 - P26010 (ITB7_HUMAN)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for P26010: 3
 
Function
Integrin alpha-4/beta-7 (Peyer patches-specific homing receptor LPAM-1) is an adhesion molecule that mediates lymphocyte migration and homing to gut-associated lymphoid tissue (GALT). Integrin alpha-4/beta-7 interacts with the cell surface adhesion molecules MADCAM1 which is normally expressed by the vascular endothelium of the gastrointestinal tract. Interacts also with VCAM1 and fibronectin, an extracellular matrix component. It recognizes one or more domains within the alternatively spliced CS-1 region of fibronectin. Interactions involves the tripeptide L-D-T in MADCAM1, and L-D-V in fibronectin. Binds to HIV-1 gp120, thereby allowing the virus to enter GALT, which is thought to be the major trigger of AIDS disease. Interaction would involve a tripeptide L-D-I in HIV-1 gp120. Integrin alpha-E/beta-7 (HML-1) is a receptor for E-cadherin. UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Heterodimer of an alpha and a beta subunit. Beta-7 associates with either alpha-4 or alpha-E. Integrin alpha-4/beta-7 interacts with MADCAM1, VCAM1, fibronectin, and may also interact with HIV-1 gp120. Interacts with FLNA (via filamin repeats 4, 9, 12, 17, 19, 21, and 23) (PubMed:19828450). UniProt
Domain
Domain I contains three cation-binding sites: the ligand-integrin-binding site (LIMBS), the metal ion-dependent adhesion site (MIDAS), and the adjacent to MIDAS site (ADMIDAS). In the absence of a ligand or in calcium-dependent binding, only ADMIDAS is occupied. In magnesium-dependent binding all three sites bind metal ions. LIMBS positively modify ligand binding whereas ADMIDAS negatively modify ligand binding. UniProt
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.