Retinoic acid receptor alpha - P10276 (RARA_HUMAN)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Number of PDB entries for P10276: 6
 
Function
Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone acetylation, chromatin condensation and transcriptional suppression. On ligand binding, the corepressors dissociate from the receptors and associate with the coactivators leading to transcriptional activation. RARA plays an essential role in the regulation of retinoic acid-induced germ cell development during spermatogenesis. Has a role in the survival of early spermatocytes at the beginning prophase of meiosis. In Sertoli cells, may promote the survival and development of early meiotic prophase spermatocytes. In concert with RARG, required for skeletal growth, matrix homeostasis and growth plate function (By similarity). Regulates expression of target genes in a ligand-dependent manner by recruiting chromatin complexes containing KMT2E/MLL5. Mediates retinoic acid-induced granulopoiesis. (data source: UniProt  )
Subunit structure
Heterodimer; with RXRA. Binds DNA preferentially as a heterodimer. Interacts with CDK7 (By similarity). Interacts with coactivators NCOA3 and NCOA6. Interacts with NCOA7; the interaction requires ligand-binding. Interacts with KMT2E/MLL5. Interacts (via the ligand-binding domain) with PRAME; the interaction is ligand (retinoic acid)-dependent. Interacts with AKT1; the interaction phosphorylates RARA and represses transactivation. Interacts with PRKAR1A; the interaction negatively regulates RARA transcriptional activity. Interacts with NCOR1 and NCOR2. Interacts with PRMT2. Interacts with LRIF1. Interacts with ASXL1 and NCOA1. (data source: UniProt  )
Domain
Composed of three domains: a modulating N-terminal domain, a DNA-binding domain and a C-terminal ligand-binding domain. (data source: UniProt  )
UniProtKB:
Species: 
Gene names: Gene View for RARA NR1B1
Length:
Display Options
Zoom
min
max
Sort by
Color by
 
Legend

The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.

Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  

The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).