CRISPR-associated endoribonuclease C2c2 - P0DOC6 (C2C2_LEPSD)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for P0DOC6: 2
 
Function
CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA, optimally 28 nucleotides in this system) (PubMed:27256883). When the appropriate sequences are cloned into the CRISPR array confers immunity to ssRNA(+) enterobacteria phage MS2 (PubMed:27256883). Cleaves linear ssRNA in a crRNA-dependent fashion, preferentially at U residues; has no activity on partially dsRNA, ssDNA or dsDNA (PubMed:27256883). RNA secondary structure surrounding the target influence the cleavage site and efficiency; unlike other CRISPR-Cas effectors C2c2 cleaves outside of the crRNA binding site (PubMed:27256883). In the presence of a viable RNA target others RNAs can also be degraded in vitro and probably also in vivo, suggesting this type of CRISPR-Cas might also prevent viral spread by inducing programmed cell death or dormancy (PubMed:27256883). This system has a 3' protospacer flanking site (PFS), it does not cleave when the 3' PFS is G (PFS is equivalent to PAM, the protospacer adjacent motif) (PubMed:27256883). Mutations of its active site residues results in an RNA-programmed RNA-binding protein (PubMed:27256883). UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Monomer (PubMed:27256883). UniProt
Domain
The RNase active sites are probably within the 2 HEPN-like folds, and the 2 folds might interact in vivo (PubMed:26593719, PubMed:27256883). UniProt
  • Other Gene names: c2c2
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.