POP-OUT | CLOSE
 

50S ribosomal protein L14 - P0ADY5 (RL14_ECO57)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Number of PDB entries for P0ADY3: 107
 
Function
Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome (By similarity). (data source: UniProt  )
This protein binds directly to 23S ribosomal RNA. In the E.coli 70S ribosome (PubMed:12809609) it has been modeled to make two contacts with the 16S rRNA of the 30S subunit, forming part of bridges B5 and B8, connecting the 2 subunits. Although the protein undergoes significant rotation during the transition from an initiation to and EF-G bound state, the bridges remain stable. In the 3.5 A resolved structures (PubMed:16272117) L14 and L19 interact and together make contact with the 16S rRNA in bridges B5 and B8. (data source: UniProt  )
Can also interact with RsfS, in this case bridge B8 probably cannot form, and the 30S and 50S ribosomal subunits do not associate, which represses translation. (data source: UniProt  )
Subunit structure
Part of the 50S ribosomal subunit. Forms a cluster with proteins L3 and L19. In the 70S ribosome, L14 and L19 interact and together make contacts with the 16S rRNA in bridges B5 and B8 (By similarity). (data source: UniProt  )
UniProtKB:
Species: 
Gene names: rplN b3310 JW3272
Length:
Display Options
Zoom
min
max
Sort by
Color by
 
Legend

The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.

Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  

The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).