Energy-dependent translational throttle protein EttA - P0A9W3 (ETTA_ECOLI)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for P0A9W3: 2
 
Function
A translation factor that gates the progression of the 70S ribosomal initiation complex (IC, containing tRNA(fMet) in the P site) into the translation elongation cycle by using a mechanism sensitive to the ATP/ADP ratio. Binds to the 70S ribosome E site where it modulates the state of the translating ribosome during subunit translocation. Stimulates dipeptide bond synthesis in the presence of ATP (cell in high energy state), but inhibits dipeptide synthesis in the presence of ADP (cell in low energy state), and thus may control translation in response to changing ATP levels (including during stationary phase). Following ATP hydrolysis is probably released allowing the ribosome to enter the elongation phase. Its specificity for the IC may be conferred by its recognition of features unique to tRNA(fMet). UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Monomer at concentrations found in vivo, exists in a slowly reversible monomer-homodimer equilibrium. Probably contacts ribosomal proteins L1, L5, L33 and S7, the 16S and 23S rRNA and the P site containing tRNA(fMet). UniProt
Domain
The P-site tRNA interaction motif (PtIM domain, residues 242-322) probably interacts with the P site tRNA(fMet) as well as the 23S rRNA. UniProt
  • Other Gene names: ettA, yjjK, b4391, JW4354
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.