Ribonucleoside-diphosphate reductase small chain 1 - P09938 (RIR2_YEAST)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Number of PDB entries for P09938: 3
Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. RNR2 provides the diiron-tyrosyl radical center. (data source: UniProt  )
Catalytic Activity

2'-deoxyribonucleoside diphosphate + thioredoxin disulfide + H2O = ribonucleoside diphosphate + thioredoxin.

(data source: UniProt  )
Subunit structure
Heterotetramer of two large (R1) and two small (R2) subunits. S.cerevisiae has two different R1 subunits (RNR1 and RNR3) and two different R2 subunits (RNR2 and RNR4). The functional form of the small subunits is a RNR2-RNR4 heterodimer, where RNR2 provides the iron-radical center and RNR4 is required for proper folding of RNR2 and assembly with the large subunits. Under normal growth conditions, the active form of the large subunits is a homodimer of the constitutively expressed RNR1. In damaged cells or cells arrested for DNA synthesis, the reductase consists of multiple species because of the association of the small subunits (RNR2-RNR4) with either the RNR1 homodimer or a heterodimer of RNR1 and the damage-inducible RNR3. Interacts with DIF1. (data source: UniProt  )
Gene names: RNR2 CRT6 YJL026W J1271
Display Options
Sort by
Color by

The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.

Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  

The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).