Gag-Pol polyprotein - P03355 (POL_MLVMS)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for P03355: 36
 
Function
Gag-Pol polyprotein plays a role in budding and is processed by the viral protease during virion maturation outside the cell. During budding, it recruits, in a PPXY-dependent or independent manner, Nedd4-like ubiquitin ligases that conjugate ubiquitin molecules to Gag, or to Gag binding host factors. Interaction with HECT ubiquitin ligases probably link the viral protein to the host ESCRT pathway and facilitate release. UniProt
Catalytic Activity
Endonucleolytic cleavage to 5'-phosphomonoester. UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Capsid protein p30 is a homohexamer, that further associates as homomultimer. The virus core is composed of a lattice formed from hexagonal rings, each containing six capsid monomers. The protease is a homodimer, whose active site consists of two apposed aspartic acid residues. The reverse transcriptase is a monomer (By similarity). Capsid protein p30 interacts with mouse UBE2I and mouse PIAS4. Reverse transcriptase/ribonuclease H p80 interacts (via RT and RNase domains) with host release factor ETF1; this interaction is essential for translational readthrough of amber codon between viral gag and pol genes. Gag-Pol polyprotein also interacts with host release factor ETF1. UniProt
Domain
Late-budding domains (L domains) are short sequence motifs essential for viral particle release. They can occur individually or in close proximity within structural proteins. They interacts with sorting cellular proteins of the multivesicular body (MVB) pathway. Most of these proteins are class E vacuolar protein sorting factors belonging to ESCRT-I, ESCRT-II or ESCRT-III complexes. RNA-binding phosphoprotein p12 contains one L domain: a PPXY motif which potentially interacts with the WW domain 3 of NEDD4 E3 ubiquitin ligase. PPXY motif is essential for virus egress. Matrix protein p15 contains one L domain: a PTAP/PSAP motif, which potentially interacts with the UEV domain of TSG101. The junction between the matrix protein p15 and RNA-binding phosphoprotein p12 also contains one L domain: a LYPX(n)L motif which potentially interacts with PDCD6IP. Both PSAP and LYPX(n)L domains might play little to no role in budding and possibly drive residual virus release. contains. UniProt
  • Organism: isolate Shinnick
  • Length:
  • UniProt
  • Other Gene names: gag-pol
This protein in other organisms (by gene name):
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.