Major capsid protein L1 - P03101 (VL1_HPV16)

 

Protein Feature View of PDB entries mapped to a UniProtKB sequence  

  • Number of PDB entries for P03101: 9
 
Function
Forms an icosahedral capsid with a T=7 symmetry and a 50 nm diameter. The capsid is composed of 72 pentamers linked to each other by disulfide bonds and associated with L2 proteins. Binds to heparan sulfate proteoglycans on cell surface of basal layer keratinocytes to provide initial virion attachment. This binding mediates a conformational change in the virus capsid that facilitates efficient infection. The virion enters the host cell via endocytosis. During virus trafficking, L1 protein dissociates from the viral DNA and the genomic DNA is released to the host nucleus. The virion assembly takes place within the cell nucleus. Encapsulates the genomic DNA together with protein L2. UniProt
Pathway Maps
Maps:       
Reactions:
      ESCHER  BiGG
Subunit Structure
Self-assembles into homopentamers. The capsid has an icosahedral symmetry and consists of 72 capsomers, with each capsomer being a pentamer of L1. Interacts with the minor capsid protein L2; this interaction is necessary for viral genome encapsidation. Interacts with protein E2; this interaction enhances E2-dependent replication and transcription activation (PubMed:25911730). Interacts with host KPNA2; this interaction mediates the nuclear localization of L1 capsomers (PubMed:11971900). Interacts with host ITGA6 (PubMed:11341777). Interacts with host SDC1; this interaction promotes efficient infection of keratinocytes (PubMed:26289843). UniProt
Legend
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from SBKB   and the Protein Model Portal  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.