TA1 is found in 22 entries

TA1 as free ligands, exist in 22 entries. Examples include 1JFF, 2HXF, 2HXH

Find related ligands: Stereoisomers Similar ligands Chemical Structure Search

View summary at Ligand Expo

Chemical Component Summary

Identifiers (2beta,5beta,7alpha,8alpha,10alpha,13alpha)-4,10-bis(acetyloxy)-1,7-dihydroxy-13-({(2R,3S)-2-hydroxy-3-phenyl-3-[(phenylcarbonyl)amino]propanoyl}oxy)-9-oxo-5,20-epoxytax-11-en-2-yl benzoate
Formula C47 H51 N O14
Molecular Weight 853.91 g/mol
Type non-polymer
Isomeric SMILES CC(=O)O[C@@H]1C2=C(C)[C@H](C[C@@](O)([C@@H](OC(=O)c3ccccc3)C3[C@@]4(CO[C@@H]4C[C@H](O)[C@@]3(C)C1=O)OC(C)=O)C2(C)C)OC(=O)[C@H](O)[C@@H](NC(=O)c1ccccc1)c1ccccc1
InChI InChI=1S/C47H51NO14/c1-25-31(60-43(56)36(52)35(28-16-10-7-11-17-28)48-41(54)29-18-12-8-13-19-29)23-47(57)40(61-42(55)30-20-14-9-15-21-30)38-45(6,32(51)22-33-46(38,24-58-33)62-27(3)50)39(53)37(59-26(2)49)34(25)44(47,4)5/h7-21,31-33,35-38,40,51-52,57H,22-24H2,1-6H3,(H,48,54)/t31-,32-,33+,35-,36+,37+,38-,40-,45+,46-,47+/m0/s1

Chemical Details

Formal Charge 0
Atom Count 113
Chiral Atom Count 11
Chiral Atoms C01 C02 C10 C11 C15 C17 C18 C21 C26 C28 C29
Bond Count 119
Aromatic Bond Count 18

Drug Info: DrugBank

DrugBank ID DB01229   (Stereoisomeric match)
Name Paclitaxel
Groups approved
Description Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. When it was developed commercially by Bristol-Myers Squibb (BMS), the generic name was changed to paclitaxel and the BMS compound is sold under the trademark Taxol. In this formulation, paclitaxel is dissolved in Kolliphor EL and ethanol, as a delivery agent. A newer formulation, in which paclitaxel is bound to albumin, is sold under the trademark Abraxane. [Wikipedia]
  • (2AR-(2aalpha,4beta,4abeta,6beta,9alpha(alpha r*,betas*),11alpha,12alpha,12balpha))-beta-(benzoylamino)-alpha-hydroxybenzenepropanoic acid 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester
  • 5beta,20-Epoxy-1,2-alpha,4,7beta,10beta,13alpha-hexahydroxytax-11-en-9-one 4,10-diacetate 2-benzoate 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine
  • Paclitaxel
  • Taxol
  • Taxol A
Brand Names
  • Abraxane
  • Abraxane for Injectable Suspension
  • Aj-paclitaxel
  • Apo-paclitaxel Injectable
  • Paclitaxel
  • Paclitaxel Injection
  • Paclitaxel Injection USP
  • Paclitaxel Injection, USP
  • Paclitaxel for Injection
  • Paclitaxel for Injection USP
  • Paxene
  • Taxol
  • Teva-paclitaxel for Injection
  • Onxol
  • Paxceed
Affected Organism Humans and other mammals
Indication Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer.
Pharmacology Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis.
Mechanism of action Paclitaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Route of administration intravenous
  • Antineoplastic Agents, Phytogenic
  • Tubulin Modulators
ATC-Code L01CD01
AHFS-Code 10:00.00
CAS number 33069-62-4
Drug Info/Drug Targets: DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS. Nucleic Acids Res. 2011 Jan; 39 (Database issue):D1035-41. | PMID: 21059682