AG2

AGMATINE

AG2 is found in 14 entries

AG2 in polymers: 1 entries. Examples include: 1AQ7,

AG2 as free ligands, exist in 13 entries. Examples include 1MT1, 1N13, 2QQC

Find related ligands: Stereoisomers Similar ligands Chemical Structure Search

View summary at Ligand Expo

Chemical Component Summary

Name AGMATINE
Identifiers 1-(4-aminobutyl)guanidine
Synonyms (4-AMINOBUTYL)GUANIDINE
Formula C5 H14 N4
Molecular Weight 130.19 g/mol
Type non-polymer
Isomeric SMILES NCCCCNC(N)=N
InChI InChI=1S/C5H14N4/c6-3-1-2-4-9-5(7)8/h1-4,6H2,(H4,7,8,9)
InChI Key QYPPJABKJHAVHS-UHFFFAOYSA-N

Chemical Details

Formal Charge 0
Atom Count 23
Chiral Atom Count 0
Chiral Atoms
Bond Count 22
Aromatic Bond Count 0

Drug Info: DrugBank

DrugBank ID DB08838   (Stereoisomeric match)
Name Agmatine
Groups
  • experimental
  • investigational
Description Agmantine is a natural metabolite of the amino acid arginine. It is formed when arginine is decarboxylated by the enzyme arginine decarboxylase and is found naturally in ragweed pollen, ergot fungi, octopus muscle, herring sperm, sponges, and the mammalian brain. Agmatine is both an experimental and investigational drug. As an investigational drug, it is being studied in a non-blinded prospective case study in the United States looking at patients who have been diagnosed with small fiber peripheral neuropathy between the ages of 18 to 75 years. Up to now (July 2013), the results of this study have not yet been published. As an experimental drug, agmatine is being studied for several indications such as cardioprotection, diabetes, decreased kidney function, neuroprotection (stroke, severe CNS injuries, epilepsy, glaucoma, and neuropathic pain), and psychiatric conditions (depression, anxiety, schizophrenia, and cognition). The exact mechanism of action is still being investigated for all of the potential indications of agmatine.
Synonyms (4-aminobutyl) guanidine
Salts Agmatine sulfate
Brand Names
Affected Organism Humans and other mammals
Indication Agmatine is being studied experimentally for several indications such as cardioprotection, diabetes, decreased kidney function, neuroprotection (stroke, severe CNS injuries, epilepsy, glaucoma, and neuropathic pain), and psychiatric conditions (depression, anxiety, schizophrenia, and cognition). As an investigational drug, agamatine is being studied in a non-blinded prospective case study in the United States looking at patients who have been diagnosed with small fiber peripheral neuropathy.
Pharmacology Agmatine has several physiological effects. Its cardiovascular effects include mildly reducing heart rate and blood pressure. Also it promotes a mild hypoglycemic state, reduces cellular oxidative stress, and enhances glomerular filtration rate.
Mechanism of action The exact mechanism of action is still being investigated for all of the potential indications of agmatine. Some of the biochemical mechanisms discovered so far concern agmatine's indication for diabetes, neuroprotection, and psychiatric conditions. In diabetes, agmatine produces hypoglycemia by increasing the release of insulin form pancreatic islet cells and increasing glucose uptake by the cells through increased endorphin release from the adrenal glands. Concerning neuroprotection, agmatine's effects are thought to involve modulation of receptors (NMDA, alpha 2, and imidazoline) and ion channels (ATP sensitive potassium channels and voltage-gated calcium channels) as well as blocking nitric oxide synthesis. Agmatine blocks nitric oxide synthesis by reducing the nitric oxide synthase -2 (NOS-2) protein in astroglial cells and macrophages. With respect to agmatine's benefit in psychiatric disorders, it is suggested that the mechanism involves neurotransmitter receptor modulation of the NMDA, alpha-2, serotonin, opioid, and imidazoline receptors. Specifically when agmatine binds to the imidazoline and alpha 2 receptors, it acts as a neurotransmitter and releases catecholamines from the adrenal gland.
CAS number 306-60-5
Drug Info/Drug Targets: DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS. Nucleic Acids Res. 2011 Jan; 39 (Database issue):D1035-41. | PMID: 21059682