90.4% (768/850) of all residues were in favored (98%) regions.
99.9% (849/850) of all residues were in allowed (>99.8%) regions.

There were 1 outliers (phi, psi):
[9] 74 VAL (55.7, 80.3)
90.6% (77/85) of all residues were in favored (98%) regions.
100.0% (85/85) of all residues were in allowed (>99.8%) regions.

There were no outliers.
MolProbity Ramachandran analysis

2LXA, model 2

94.1% (80/85) of all residues were in favored (98%) regions.
100.0% (85/85) of all residues were in allowed (>99.8%) regions.

There were no outliers.

http://kinemage.biochem.duke.edu

MolProbity Ramachandran analysis

2LXA, model 3

91.8% (78/85) of all residues were in favored (98%) regions.
100.0% (85/85) of all residues were in allowed (>99.8%) regions.

There were no outliers.

http://kinemage.biochem.duke.edu

88.2% (75/85) of all residues were in favored (98%) regions.
100.0% (85/85) of all residues were in allowed (>99.8%) regions.

There were no outliers.
87.1% (74/85) of all residues were in favored (98%) regions.
100.0% (85/85) of all residues were in allowed (>99.8%) regions.

There were no outliers.

http://kinemage.biochem.duke.edu
91.8% (78/85) of all residues were in favored (98%) regions.
100.0% (85/85) of all residues were in allowed (>99.8%) regions.

There were no outliers.
89.4% (76/85) of all residues were in favored (98%) regions.
100.0% (85/85) of all residues were in allowed (>99.8%) regions.

There were no outliers.

http://kinemage.biochem.duke.edu

91.8% (78/85) of all residues were in favored (98%) regions.
100.0% (85/85) of all residues were in allowed (>99.8%) regions.

There were no outliers.
MolProbity Ramachandran analysis

89.4% (76/85) of all residues were in favored (98%) regions.
98.8% (84/85) of all residues were in allowed (>99.8%) regions.

There were 1 outliers (phi, psi):
[9] 74 VAL (55.7, 80.3)

http://kinemage.biochem.duke.edu
89.4% (76/85) of all residues were in favored (98%) regions.
100.0% (85/85) of all residues were in allowed (>99.8%) regions.

There were no outliers.

http://kinemage.biochem.duke.edu