Citations in PubMed

Primary Citation PubMed: 18644840 Citations in PubMed

PDB ID Mentions in PubMed Central Article count: 11

Citations in PubMed

This linkout lists citations, indexed by PubMed, to the Primary Citation for this PDB ID.

PDB ID Mentions in PubMed Central

Data mentions are occurrences of PDB IDs in the full text articles from the PubMedCentral Open Access Subset of currently about 1 million articles. For each article, the sentences containing the PDB ID are listed. Article titles can be filtered by keywords and sorted by year.

  • 3 per page
  • 5 per page
  • 10 per page
  • view all
  • Publication Year
  • Ascending
  • Descending

Structural analysis of the genetic switch that regulates the expression of restriction-modification genes.

(2008) Nucleic Acids Res 36

PubMed: 18644840 | PubMedCentral: PMC2504287 | DOI: 10.1093/nar/gkn448

Accession code Atomic coordinates and structure factor files have been deposited in the Protein Data Bank with the accession code 3CLC.

Publication Year: 2008


Structural analysis of a novel class of R-M controller proteins: C.Csp231I from Citrobacter sp. RFL231.

(2011) J Mol Biol 409

PubMed: 21440553 | PubMedCentral: PMC3115060 | DOI: 10.1016/j.jmb.2011.03.033

A comparison of the electrostatic surface of C.Csp231I (left column) and a representative portion of the C.Esp1396I protein–DNA complex structure (Protein Data Bank ID: 3CLC ).

The DNA binding surface In order to predict potential DNA binding regions, we mapped the electrostatic surface potential for comparison with other C-proteins ( Fig. 8 ) using a region of the C.Esp1396I nucleoprotein complex structure (Protein Data Bank ID: 3CLC ).

Publication Year: 2011


Benchmarks for flexible and rigid transcription factor-DNA docking.

(2011) BMC Struct Biol 11

PubMed: 22044637 | PubMedCentral: PMC3262759 | DOI: 10.1186/1472-6807-11-45

(Å) SCOP Protein Oligo_state DNA CopG repressor 1b01 2.56 a.43.1.3 A, B Homodimer E, F 5 2cpg 1.60 A, B 0.511 0.460 PhoB 1gxp a 2.50 a.4.6.1 A Monomer C, D 7 1gxq 2.00 A 1.622 1.622 AML1 Runt ... omain 1hjc 2.65 b.2.5.6 D Monomer E, F 6 1ean 1.70 A 1.056 1.056 Papillomavirus E2 1jj4 2.40 d.58.8.1 A, B Heterodimer C, D 10 1f9f 1.90 C, D 0.949 1.484 TATA-binding protein 1qn4 1.86 d.129.1.1 B Monomer E, F 15 1vok 2.10 B 0.934 0.934 Tet repressor 1qpi 2.50 a.4.1.9 A, C Homodimer B, M 14 2tct 2.10 A, B 2.061 1.359 MtaN 1r8d 2.70 a.6.1.3 A, B Homodimer C, D 8 1jbg 2.75 A, B 2.107 1.368 Sigma subunit domain 4 1rio a 2.30 a.4.13.2 H Monomer U, T 6 1ku3 1.80 A 1.405 1.405 Easy MecI 1sax 2.80 a.4.5.39 A, B Homodimer C, D 12 1okr 2.40 A, B 1.718 1.586 CAP 2cgp 2.20 a.4.5.4 A, F Homodimer B, C, D, E 10 1i5z 1.90 A, B 1.652 1.919 LRP/ASNC family protein 2e1c 2.10 a.4.5.32 A, F Homodimer B, D 12 2zny 2.59 A, B 1.339 1.184 IdeR 2it0 a 2.60 a.4.5.24 C, D Homodimer E, F 11 2isy 1.96 A, B 0.476 0.489 Phi 434 repressor 2or1 2.50 a.35.1.2 R, L Homodimer A, B 17 1r69 c 2.00 A, B 0.570 0.493 PutA 2rbf 2.25 N/A A, B Homodimer C, D 8 2gpe 1.90 A, B 0.798 0.571 SoxR 2zhg 2.80 a.6.1.3 A, D Homodimer B, C 6 2zhh 3.20 A, B 1.749 1.467 Controller protein 3clc a 2.80 a.35.1.3 C, D Homodimer E, F 14 3fya 3.00 A, B 0.834 0.809 CprK 3e6c 1.80 a.4.5.4 C, D Homodimer A, B, E, F 12 3e5u 1.83 A, B 1.060 0.906 NrtR 3gz6 2.90 N/A A, B Homodimer C, D 15 3gz5 2.20 A, B 0.853 0.726 Max 1an2 2.90 a.38.1.1 A, C Homodimer B, D 10 1r05 d N/A A, B 8.074 4.767 RXR-alpha 1by4 2.10 g.39.1.2 A, B Homodimer E, F 8 1rxr c, d N/A A, B 4.637 2.326 Met repressor 1cma 2.80 a.43.1.5 A, B Homodimer C, D 4 1cmc 1.80 A, B 2.232 2.313 Myb 1h8a a 2.23 a.4.1.3 C Monomer D, E 8 1gv2 1.68 A 9.153 9.153 QacR 1jt0 a 2.90 a.4.1.9 B, D Homodimer E, F 12 1jt6 2.54 D, E 2.924 1.650 Lambda repressor 1lmb 1.80 a.35.1.2 3, 4 Homodimer 1, 2 10 1lrp 3.20 A, B 32.342 0.928 Trp repressor 1tro a 1.90 a.4.12.1 A, C Homodimer I, J 12 1p6z 1.67 N, R 3.095 1.427 Prospero 1xpx 2.80 a.4.1.1 A Monomer C, D 3 1mij 2.05 A 0.519 0.519 Hard OhrR 1z9c 2.64 a.4.5.28 C, D Homodimer I, J 12 1z91 2.50 A, B 2.521 1.919 Put3 1zme 2.50 g.38.1.1 C, D Homodimer A, B 5 1ajy d N/A A, B 9.326 8.725 Phi lambda phage cII 1zs4 1.70 a.35.1.9 A, B, C, D HT f U, T 14 1zpq 2.80 A, B, C, D 4.947 2.679 p53 2ac0 1.80 b.2.5.2 A, B, C, D HT f E, F, G, H 21 2j1y 1.69 A, B, C, D 25.325 0.932 Omega repressor 2bnw 2.45 a.43.1.4 A, B Homodimer E, F 4 1irq 3.50 A, B 0.887 1.049 ILF 2c6y 2.40 a.4.5.14 A Monomer C, D 8 1jxs d N/A A 2.830 2.830 Phi 29 protein p4 2fio 2.70 N/A A, B Homodimer C, D 4 2fip 2.00 C, D 0.679 0.496 IRF-2 2irf a 2.20 a.4.5.23 L Monomer C, D 6 1irf d N/A A 3.459 3.459 CgmR 2yvh a 2.50 N/A C, D Homodimer E, F, G, H 10 2yve 1.40 A, B 2.663 1.599 HipB 3dnv 2.68 N/A B, C Homodimer E, T 10 2wiu 2.35 B, D 3.511 2.925 Engrailed homeodomain 3hdd a 2.20 a.4.1.1 A Monomer C, D 4 1enh 2.10 A 0.716 0.716 a Has more than one binding unit b NRBC: number of protein residues having side-chain contacts with DNA bases c Modeled unit structure d NMR structure, resolution N/A e RMSD u : global RMSD between bound and unbound TF-units, RMSD c : global RMSD between bound and unbound TF-chains f HT: homotetramer Table 2 Rigid TF-DNA docking benchmark TF-DNA Complex Name PDB TF-DNA Unit Chains ID Res.

(Å) SCOP Protein Oligo_state DNA NRBC b BSA(Å 2 ) c ZIF268 1aay 1.60 g.37.1.1 A Monomer B, C 13 960.81 Max 1an2 2.90 a.38.1.1 A, C Homodimer B, D 10 933.75 Papillomavirus E2 1jj4 2.40 d.58.8.1 A, B Heterodimer C, D 10 839.96 QacR 1jt0 a 2.90 a.4.1.9 B, D Homodimer E, F 12 1085.51 Lambda repressor 1lmb 1.80 a.35.1.2 3, 4 Homodimer 1, 2 10 1105.4 TATA-binding 1qn4 1.86 d.129.1.1 B Monomer E, F 15 1107.51 Tet repressor 1qpi 2.50 a.4.1.9 A, C Homodimer B, M 14 973.49 MecI 1sax 2.80 a.4.5.39 A, B Homodimer C, D 12 1130.16 Trep repressor 1tro a 1.90 a.4.12.1 A, C Homodimer I, J 12 1243.06 OhrR 1z9c 2.64 a.4.5.28 C, D Homodimer I, J 12 1669.81 Easy Phi lambda phage cII 1zs4 1.70 a.39.1.9 A, B, C, D HT d U, T 14 1043.06 p53 2ac0 1.80 b.2.5.2 A, B, C, D HT d E, F, G, H 21 1921.76 CAP 2cgp 2.20 a.4.5.4 A, F Homodimer B, C, D, E 10 944.43 LRP/ASNC family protein 2e1c 2.10 a.4.5.32 A, F Homodimer B, D 11 803.23 IdeR 2it0 a 2.60 a.4.5.24 C, D Homodimer E, F 11 1123.8 Phi 434 repressor 2or1 2.50 a.35.1.2 R, L Homodimer A, B 17 1021.78 CgmR 2yvh a 2.50 N/A C, D Homodimer E, F, G, H 10 1056.55 Controller protein 3clc a 2.80 a.35.1.3 C, D Homodimer E, F 14 1002.57 HipB 3dnv 2.68 N/A B, C Homodimer E, T 10 990.24 CprK 3e6c 1.80 a.4.5.4 C, D Homodimer A, B, E, F 12 1059.42 NrtR 3gz6 2.90 N/A A, B Homodimer C, D 15 1845.4 CopG repressor 1b01 2.56 a.43.1.3 A, B Homodimer E, F 5 573.31 RXR-alpha 1by4 2.10 g.39.1.2 A, B Homodimer E, F 8 1031.94 Met repressor 1cma 2.80 a.43.1.5 A, B Homodimer C, D 4 693.13 PhoB 1gxp a 2.50 a.4.6.1 A Monomer C, D 7 739.09 Myb 1h8a a 2.23 a.4.1.3 C Monomer D, E 8 738.59 AML1 Runt domain 1hjc 2.65 b.2.5.6 D Monomer E, F 6 540.76 MtaN 1r8d 2.70 a.6.1.3 A, B Homodimer C, D 8 1338.92 Hard Sigma subunit domain 4 1rio a 2.30 a.4.13.2 H Monomer U, T 6 423.27 Prospero 1xpx 2.80 a.4.1.1 A Monomer C, D 3 325.79 Put3 1zme 2.50 g.38.1.1 C, D Homodimer A, B 5 1211.56 Omega repressor 2bnw 2.45 a.43.1.4 A, B Homodimer E, F 4 519.26 ILF 2c6y 2.40 a.4.5.14 A Monomer C, D 8 814.94 Phi 29 protein p4 2fio 2.70 N/A A, B Homodimer C, D 4 903.33 IRF-2 2irf a 2.20 a.4.5.23 L Monomer C, D 6 668.45 PutA 2rbf 2.25 N/A A, B Homodimer C, D 8 614.12 SoxR 2zhg 2.80 a.6.1.3 A, D Homodimer B, C 6 869.73 Engrailed homeodomain 3hdd a 2.20 a.4.1.1 A Monomer C, D 4 524.73 a Has more than one binding unit b NRBC: number of protein residues having side-chain contacts with DNA bases c BSA: buried surface area in TF-DNA complexes d HT: homotetramer Results Overview of benchmark test cases There are a total of 38 test cases for our TF-DNA docking benchmarks.

Publication Year: 2011


Predicting DNA-binding locations and orientation on proteins using knowledge-based learning of geometric properties.

(2011) Proteome Sci 9 Suppl 1

PubMed: 22166082 | PubMedCentral: PMC3289072 | DOI: 10.1186/1477-5956-9-S1-S11

PDB ID and the chain ID Location error in Å Groove type to which the top-1 DBU binds Orientation error in degree 1KU7:A 0.8 Major 7.7 1RIO:A 3.6 Major 21.3 2R1J:L 8.7 NA NA 2Z3X:A 4.0 Minor 5.... 1A3Q:A 5.7 Major 19.6 3DFX:A 2.4 Major 10.7 2O49:A 8.8 NA NA 2E1C:A 23.2 NA NA 3ERE:D 2.7 Major 41.9 1BDT:A 13.6 NA NA 3CLC:A 5.1 Major 63.7 The four cases for which the proposed method failed to find a correct binding location are shown in italic form.

Publication Year: 2011


Recognition of dual symmetry by the controller protein C.Esp1396I based on the structure of the transcriptional activation complex.

(2012) Nucleic Acids Res 40

PubMed: 22210861 | PubMedCentral: PMC3351150 | DOI: 10.1093/nar/gkr1250

In the crystal structure of the C.Esp1396I—35-bp operator complex (PDB code: 3CLC), the pseudo-dyad axis relating the two operators is shifted by half a base (i.e. centred on T rather than the... expected GT).

Publication Year: 2012


The structural basis of differential DNA sequence recognition by restriction-modification controller proteins.

(2012) Nucleic Acids Res 40

PubMed: 22941636 | PubMedCentral: PMC3488213 | DOI: 10.1093/nar/gks718

In the crystal structure of the complex (PDB code: 3CLC), two dimers are bound to the DNA, each centred on the pseudo-dyad located between the central A and T bases in the TATA sequence within each op... rator site, and interacting across the major groove at the centre of the DNA.

Publication Year: 2012


Structural analysis of DNA-protein complexes regulating the restriction-modification system Esp1396I.

(2013) Acta Crystallogr Sect F Struct Biol Cryst Commun 69

PubMed: 23989141 | PubMedCentral: PMC3758141 | DOI: 10.1107/S174430911302126X

Groove-width analysis of the 25O L DNA (cyan) compared with the published 35O L+R complex (PDB entry 3clc ; magenta; McGeehan et al. , 2008 ▶ ).

Publication Year: 2013


BswR controls bacterial motility and biofilm formation in Pseudomonas aeruginosa through modulation of the small RNA rsmZ.

(2014) Nucleic Acids Res 42

PubMed: 24497189 | PubMedCentral: PMC3985676 | DOI: 10.1093/nar/gku106

To elucidate how BswR binds to DNA, a structural alignment of BswR onto Esp1396I-DNA (PDB ID: 3CLC) resulted in a DNA-binding model ( Figure 7 A), in which no steric clash between BswR and the double-... tranded DNA (dsDNA) was observed.

Structural alignment of one protein dimer of Esp1396I–DNA complex (PDB ID: 3CLC) onto BswR dimer by fitting the two N-terminal domains was carried out with coot, subsequently the excess nucleotides far apart from BswR were removed.

Publication Year: 2014


Structural and mutagenic analysis of the RM controller protein C.Esp1396I.

(2014) PLoS One 9

PubMed: 24887147 | PubMedCentral: PMC4041747 | DOI: 10.1371/journal.pone.0098365

In the crystal structure of the complex (PDB code: 3CLC), two dimers are bound to the DNA, each centred on the pseudo-dyad located between the central A and T bases in the TATA sequence within each op... rator site, and interacting across the major groove at the centre of the DNA.

Publication Year: 2014


PubMed ID is not available.

Published in 2015

PubMedCentral: PMC4344358

The C.Esp1396I nucleoprotein tetramer complex [PDB ID: 3clc , resolution 2.8 Å (McGeehan et al. , 2008 ▶ )] was chosen as a model due to the relatively large 35 bp dsDNA compon... nt, resulting in the number of protein and DNA atoms being of the same order (protein: 2496 non-hydrogen atoms; DNA: 1429 atoms).

For the first dataset, molecular replacement was then performed using the program PHASER (McCoy et al. , 2007 ▶ ) with the previously deposited C.Esp1396I complex structure PDB entry 3clc (McGeehan et al. , 2008 ▶ ) as the search model.

Publication Year: 2015


PubMed ID is not available.

Published in 2015

PubMedCentral: PMC4505408

The IKKγ + IKKβ crystal structure (PDB entry 3BRT ( 22 ), residues: 50–110) has the closest match with Register-4 followed by Register-0 ( Fig. 7 B ) while the crystal structur... of IKKγ + vFLIP (PDB entry 3CLC ( 12 ), residues: 195–250) has closest match with Register-3 followed by Register-6 ( Fig. 7 C ).

Publication Year: 2015