4O9L

crystal structure of horse MAVS card domain mutant E26R


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.94 Å
  • R-Value Free: 0.209 
  • R-Value Work: 0.163 
  • R-Value Observed: 0.165 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural basis for the prion-like MAVS filaments in antiviral innate immunity.

Xu, H.He, X.Zheng, H.Huang, L.J.Hou, F.Yu, Z.de la Cruz, M.J.Borkowski, B.Zhang, X.Chen, Z.J.Jiang, Q.X.

(2014) Elife 3: e01489-e01489

  • DOI: https://doi.org/10.7554/eLife.01489
  • Primary Citation of Related Structures:  
    3J6C, 4O9F, 4O9L

  • PubMed Abstract: 

    Mitochondrial antiviral signaling (MAVS) protein is required for innate immune responses against RNA viruses. In virus-infected cells MAVS forms prion-like aggregates to activate antiviral signaling cascades, but the underlying structural mechanism is unknown. Here we report cryo-electron microscopic structures of the helical filaments formed by both the N-terminal caspase activation and recruitment domain (CARD) of MAVS and a truncated MAVS lacking part of the proline-rich region and the C-terminal transmembrane domain. Both structures are left-handed three-stranded helical filaments, revealing specific interfaces between individual CARD subunits that are dictated by electrostatic interactions between neighboring strands and hydrophobic interactions within each strand. Point mutations at multiple locations of these two interfaces impaired filament formation and antiviral signaling. Super-resolution imaging of virus-infected cells revealed rod-shaped MAVS clusters on mitochondria. These results elucidate the structural mechanism of MAVS polymerization, and explain how an α-helical domain uses distinct chemical interactions to form self-perpetuating filaments. DOI: http://dx.doi.org/10.7554/eLife.01489.001.


  • Organizational Affiliation

    Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
mitochondrial antiviral signaling protein (MAVS)97Equus caballusMutation(s): 1 
Gene Names: MAVS
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.94 Å
  • R-Value Free: 0.209 
  • R-Value Work: 0.163 
  • R-Value Observed: 0.165 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 50.614α = 90
b = 51.942β = 90
c = 35.754γ = 90
Software Package:
Software NamePurpose
HKL-3000data collection
CCP4model building
PHENIXrefinement
HKL-3000data reduction
HKL-3000data scaling
CCP4phasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-03-12
    Type: Initial release
  • Version 1.1: 2017-11-22
    Changes: Refinement description
  • Version 1.2: 2023-09-20
    Changes: Data collection, Database references, Refinement description