4U7G

Oxidized quinone reductase 2 in complex with CK2 inhibitor TBBz


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.96 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.175 
  • R-Value Observed: 0.178 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Quinone Reductase 2 Is an Adventitious Target of Protein Kinase CK2 Inhibitors TBBz (TBI) and DMAT.

Leung, K.K.Shilton, B.H.

(2015) Biochemistry 54: 47-59

  • DOI: https://doi.org/10.1021/bi500959t
  • Primary Citation of Related Structures:  
    4U7F, 4U7G, 4U7H

  • PubMed Abstract: 

    Quinone reductase 2 (NQO2) exhibits off-target interactions with two protein kinase CK2 inhibitors, 4,5,6,7-1H-tetrabromobenzimidazole (TBBz) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT). TBBz and DMAT induce apoptosis in cells expressing an inhibitor-resistant CK2, suggesting that the interaction with NQO2 may mediate some of their pharmacological effects. In this study, we have fully characterized the binding of TBBz and DMAT to NQO2. Fluorescence titrations showed that TBBz and DMAT bind oxidized NQO2 in the low nanomolar range; in the case of TBBz, the affinity for NQO2 was 40-fold greater than its affinity for CK2. A related CK2 inhibitor, 4,5,6,7-tetrabromobenzotriazole (TBB), which failed to cause apoptosis in cells expressing inhibitor-resistant CK2, binds NQO2 with an affinity 1000-fold lower than those of TBBz and DMAT. Kinetic analysis indicated that DMAT inhibits NQO2 by binding with similar affinities to the oxidized and reduced forms. Crystal structure analysis showed that DMAT binds reduced NQO2 in a manner different from that in the oxidized state. In oxidized NQO2, TBBz and DMAT are deeply buried in the active site and make direct hydrogen and halogen bonds to the enzyme. In reduced NQO2, DMAT occupies a more peripheral region and hydrogen and halogen bonds with the enzyme are mediated through three water molecules. Therefore, although TBB, TBBz, and DMAT are all potent inhibitors of CK2, they exhibit different activity profiles toward NQO2. We conclude that the active site of NQO2 is fundamentally different from the ATP binding site of CK2 and the inhibition of NQO2 by CK2 inhibitors is adventitious.


  • Organizational Affiliation

    Department of Biochemistry, University of Western Ontario , London, Ontario, Canada N6A 5C1.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Ribosyldihydronicotinamide dehydrogenase [quinone]
A, B
230Homo sapiensMutation(s): 1 
Gene Names: NQO2NMOR2
EC: 1.10.99.2
UniProt & NIH Common Fund Data Resources
Find proteins for P16083 (Homo sapiens)
Explore P16083 
Go to UniProtKB:  P16083
PHAROS:  P16083
GTEx:  ENSG00000124588 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP16083
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.96 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.175 
  • R-Value Observed: 0.178 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 56.24α = 90
b = 83.17β = 90
c = 106.65γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
SCALAdata scaling
MOSFLMdata reduction
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2015-02-11
    Type: Initial release
  • Version 1.1: 2017-11-22
    Changes: Database references, Derived calculations, Other, Refinement description, Source and taxonomy
  • Version 1.2: 2023-09-27
    Changes: Data collection, Database references, Refinement description