4KX6

Plasticity of the quinone-binding site of the complex II homolog quinol:fumarate reductase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.95 Å
  • R-Value Free: 0.280 
  • R-Value Work: 0.240 
  • R-Value Observed: 0.241 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Plasticity of the Quinone-binding Site of the Complex II Homolog Quinol:Fumarate Reductase.

Singh, P.K.Sarwar, M.Maklashina, E.Kotlyar, V.Rajagukguk, S.Tomasiak, T.M.Cecchini, G.Iverson, T.M.

(2013) J Biol Chem 288: 24293-24301

  • DOI: https://doi.org/10.1074/jbc.M113.487082
  • Primary Citation of Related Structures:  
    4KX6

  • PubMed Abstract: 

    Respiratory processes often use quinone oxidoreduction to generate a transmembrane proton gradient, making the 2H(+)/2e(-) quinone chemistry important for ATP synthesis. There are a variety of quinones used as electron carriers between bioenergetic proteins, and some respiratory proteins can functionally interact with more than one quinone type. In the case of complex II homologs, which couple quinone chemistry to the interconversion of succinate and fumarate, the redox potentials of the biologically available ubiquinone and menaquinone aid in driving the chemical reaction in one direction. In the complex II homolog quinol:fumarate reductase, it has been demonstrated that menaquinol oxidation requires at least one proton shuttle, but many of the remaining mechanistic details of menaquinol oxidation are not fully understood, and little is known about ubiquinone reduction. In the current study, structural and computational studies suggest that the sequential removal of the two menaquinol protons may be accompanied by a rotation of the naphthoquinone ring to optimize the interaction with a second proton shuttling pathway. However, kinetic measurements of site-specific mutations of quinol:fumarate reductase variants show that ubiquinone reduction does not use the same pathway. Computational docking of ubiquinone followed by mutagenesis instead suggested redundant proton shuttles lining the ubiquinone-binding site or from direct transfer from solvent. These data show that the quinone-binding site provides an environment that allows multiple amino acid residues to participate in quinone oxidoreduction. This suggests that the quinone-binding site in complex II is inherently plastic and can robustly interact with different types of quinones.


  • Organizational Affiliation

    Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Fumarate reductase flavoprotein subunitA,
E [auth M]
577Escherichia coli K-12Mutation(s): 0 
Gene Names: frdAb4154JW4115
EC: 1.3.99.1
Membrane Entity: Yes 
UniProt
Find proteins for P00363 (Escherichia coli (strain K12))
Explore P00363 
Go to UniProtKB:  P00363
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00363
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Fumarate reductase (Anaerobic), Fe-S subunitB,
F [auth N]
243Escherichia coli BW2952Mutation(s): 0 
Gene Names: frdBBWG_3868
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
Fumarate reductase subunit CC,
G [auth O]
130Escherichia coli DH1Mutation(s): 1 
Gene Names: frdCEcDH1_3838ECDH1ME8569_4012
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 4
MoleculeChains Sequence LengthOrganismDetailsImage
Fumarate reductase subunit DD,
H [auth P]
119Escherichia coli K-12Mutation(s): 0 
Gene Names: frdDb4151JW4112
Membrane Entity: Yes 
UniProt
Find proteins for P0A8Q3 (Escherichia coli (strain K12))
Explore P0A8Q3 
Go to UniProtKB:  P0A8Q3
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A8Q3
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 5 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
FAD
Query on FAD

Download Ideal Coordinates CCD File 
I [auth A],
N [auth M]
FLAVIN-ADENINE DINUCLEOTIDE
C27 H33 N9 O15 P2
VWWQXMAJTJZDQX-UYBVJOGSSA-N
MQ7
Query on MQ7

Download Ideal Coordinates CCD File 
M [auth D],
R [auth N]
MENAQUINONE-7
C46 H64 O2
RAKQPZMEYJZGPI-LJWNYQGCSA-N
SF4
Query on SF4

Download Ideal Coordinates CCD File 
L [auth B],
Q [auth N]
IRON/SULFUR CLUSTER
Fe4 S4
LJBDFODJNLIPKO-UHFFFAOYSA-N
F3S
Query on F3S

Download Ideal Coordinates CCD File 
K [auth B],
P [auth N]
FE3-S4 CLUSTER
Fe3 S4
FCXHZBQOKRZXKS-UHFFFAOYSA-N
FES
Query on FES

Download Ideal Coordinates CCD File 
J [auth B],
O [auth N]
FE2/S2 (INORGANIC) CLUSTER
Fe2 S2
NIXDOXVAJZFRNF-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.95 Å
  • R-Value Free: 0.280 
  • R-Value Work: 0.240 
  • R-Value Observed: 0.241 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 97.093α = 90
b = 138.62β = 90
c = 273.263γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
CNSrefinement
HKL-2000data collection
HKL-2000data reduction
HKL-2000data scaling
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-07-17
    Type: Initial release
  • Version 1.1: 2013-07-24
    Changes: Database references
  • Version 1.2: 2013-09-11
    Changes: Database references
  • Version 1.3: 2019-07-17
    Changes: Data collection, Refinement description
  • Version 1.4: 2024-02-28
    Changes: Data collection, Database references, Derived calculations