2KQY

Solution structure of Avian Thymic Hormone


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structure of Avian Thymic Hormone, a High-Affinity Avian beta-Parvalbumin, in the Ca(2+)-Free and Ca(2+)-Bound States.

Schuermann, J.P.Tan, A.Tanner, J.J.Henzl, M.T.

(2010) J Mol Biol 397: 991-1002

  • DOI: https://doi.org/10.1016/j.jmb.2010.02.014
  • Primary Citation of Related Structures:  
    2KQY, 3FS7

  • PubMed Abstract: 

    Originally isolated on the basis of its capacity to stimulate T-cell maturation and proliferation, avian thymic hormone (ATH) is nevertheless a parvalbumin, one of two beta-lineage isoforms expressed in birds. We recently learned that addition of Ca(2+)-free ATH to a solution of 8-anilinonaphthalene-1-sulfonate (ANS) markedly increases ANS emission. This behavior, not observed in the presence of Ca(2+), suggests that apolar surface area buried in the Ca(2+)-bound state becomes solvent accessible upon Ca(2+) removal. In order to elucidate the conformational alterations that accompany Ca(2+) binding, we have obtained the solution structure of the Ca(2+)-free protein using NMR spectroscopy and compared it to the Ca(2+)-loaded protein, solved by X-ray crystallography. Although the metal-ion-binding (CD-EF) domains are largely coincident in the superimposed structures, a major difference is observed in the AB domains. The tight association of helix B with the E and F helices in the Ca(2+)-bound state is lost upon removal of Ca(2+), producing a deep hydrophobic cavity. The B helix also undergoes substantial rotation, exposing the side chains of F24, Y26, F29, and F30 to solvent. Presumably, the increase in ANS emission observed in the presence of unliganded ATH reflects the interaction of these hydrophobic residues with the fluorescent probe. The increased solvent exposure of apolar surface area in the Ca(2+)-free protein is consistent with previously collected scanning calorimetry data, which indicated an unusually low change in heat capacity upon thermal denaturation. The Ca(2+)-free structure also provides added insight into the magnitude of ligation-linked conformational alteration compatible with a high-affinity metal-ion-binding signature. The exposure of substantial apolar surface area suggests the intriguing possibility that ATH could function as a reverse Ca(2+) sensor.


  • Organizational Affiliation

    Northeastern Collaborative Access Team (NE-CAT), Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Parvalbumin, thymic108Gallus gallusMutation(s): 0 
UniProt
Find proteins for P19753 (Gallus gallus)
Explore P19753 
Go to UniProtKB:  P19753
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP19753
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Released Date: 2010-04-07 
  • Deposition Author(s): Henzl, M.T.

Revision History  (Full details and data files)

  • Version 1.0: 2010-04-07
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2020-02-26
    Changes: Data collection, Database references, Derived calculations, Other
  • Version 1.3: 2023-06-14
    Changes: Database references, Other