2RVM

Solution structure of the chromodomain of HP1alpha with the phosphorylated N-terminal tail


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 600 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Extended string-like binding of the phosphorylated HP1 alpha N-terminal tail to the lysine 9-methylated histone H3 tail

Shimojo, H.Kawaguchi, A.Oda, T.Hashiguchi, N.Omori, S.Moritsugu, K.Kidera, A.Hiragami-Hamada, K.Nakayama, J.Sato, M.Nishimura, Y.

(2016) Sci Rep 6: 22527-22527

  • DOI: https://doi.org/10.1038/srep22527
  • Primary Citation of Related Structures:  
    2RVL, 2RVM, 2RVN

  • PubMed Abstract: 

    The chromodomain of HP1α binds directly to lysine 9-methylated histone H3 (H3K9me). This interaction is enhanced by phosphorylation of serine residues in the N-terminal tail of HP1α by unknown mechanism. Here we show that phosphorylation modulates flexibility of HP1α's N-terminal tail, which strengthens the interaction with H3. NMR analysis of HP1α's chromodomain with N-terminal tail reveals that phosphorylation does not change the overall tertiary structure, but apparently reduces the tail dynamics. Small angle X-ray scattering confirms that phosphorylation contributes to extending HP1α's N-terminal tail. Systematic analysis using deletion mutants and replica exchange molecular dynamics simulations indicate that the phosphorylated serines and following acidic segment behave like an extended string and dynamically bind to H3 basic residues; without phosphorylation, the most N-terminal basic segment of HP1α inhibits interaction of the acidic segment with H3. Thus, the dynamic string-like behavior of HP1α's N-terminal tail underlies the enhancement in H3 binding due to phosphorylation.


  • Organizational Affiliation

    Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Chromobox protein homolog 583Mus musculusMutation(s): 0 
Gene Names: Cbx5Hp1a
UniProt & NIH Common Fund Data Resources
Find proteins for Q61686 (Mus musculus)
Explore Q61686 
Go to UniProtKB:  Q61686
IMPC:  MGI:109372
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ61686
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
SEP
Query on SEP
A
L-PEPTIDE LINKINGC3 H8 N O6 PSER
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 600 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2016-03-16
    Type: Initial release
  • Version 1.1: 2023-06-14
    Changes: Data collection, Database references, Derived calculations, Other