2M3P

DNA containing a cluster of 8-oxo-guanine and abasic site lesion: alpha anomer


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 500 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structure and dynamics of DNA duplexes containing a cluster of mutagenic 8-oxoguanine and abasic site lesions.

Zalesak, J.Lourdin, M.Krejc, L.Constant, J.F.Jourdan, M.

(2014) J Mol Biol 426: 1524-1538

  • DOI: https://doi.org/10.1016/j.jmb.2013.12.022
  • Primary Citation of Related Structures:  
    2M3P, 2M3Y, 2M40, 2M43, 2M44

  • PubMed Abstract: 

    Clustered DNA damage sites are caused by ionizing radiation. They are much more difficult to repair than are isolated single lesions, and their biological outcomes in terms of mutagenesis and repair inhibition are strongly dependent on the type, relative position and orientation of the lesions present in the cluster. To determine whether these effects on repair mechanism could be due to local structural properties within DNA, we used (1)H NMR spectroscopy and restrained molecular dynamics simulation to elucidate the structures of three DNA duplexes containing bistranded clusters of lesions. Each DNA sequence contained an abasic site in the middle of one strand and differed by the relative position of the 8-oxoguanine, staggered on either the 3' or the 5' side of the complementary strand. Their repair by base excision repair protein Fpg was either complete or inhibited. All the studied damaged DNA duplexes adopt an overall B-form conformation and the damaged residues remain intrahelical. No striking deformations of the DNA chain have been observed as a result of close proximity of the lesions. These results rule out the possibility that differential recognition of clustered DNA lesions by the Fpg protein could be due to changes in the DNA's structural features induced by those lesions and provide new insight into the Fpg recognition process.


  • Organizational Affiliation

    Département de Chimie Moléculaire, CNRS UMR5250, ICMG FR2607, Université de Grenoble, 570 rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
DNA (5'-D(*CP*GP*CP*TP*CP*(ORP)P*CP*AP*CP*GP*C)-3')11N/A
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains LengthOrganismImage
DNA (5'-D(*GP*CP*GP*TP*GP*GP*GP*AP*(8OG)P*CP*G)-3')11N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 500 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-01-08
    Type: Initial release
  • Version 1.1: 2014-04-02
    Changes: Database references