22GS

HUMAN GLUTATHIONE S-TRANSFERASE P1-1 Y49F MUTANT


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.230 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.206 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Thermodynamic description of the effect of the mutation Y49F on human glutathione transferase P1-1 in binding with glutathione and the inhibitor S-hexylglutathione.

Ortiz-Salmeron, E.Nuccetelli, M.Oakley, A.J.Parker, M.W.Lo Bello, M.Garcia-Fuentes, L.

(2003) J Biol Chem 278: 46938-46948

  • DOI: https://doi.org/10.1074/jbc.M305043200
  • Primary Citation of Related Structures:  
    22GS

  • PubMed Abstract: 

    The thermodynamics of binding of both the substrate glutathione (GSH) and the competitive inhibitor S-hexylglutathione to the mutant Y49F of human glutathione S-transferase (hGST P1-1), a key residue at the dimer interface, has been investigated by isothermal titration calorimetry and fluorescence spectroscopy. Calorimetric measurements indicated that the binding of these ligands to both the Y49F mutant and wild-type enzyme is enthalpically favorable and entropically unfavorable over the temperature range studied. The affinity of these ligands for the Y49F mutant is lower than those for the wild-type enzyme due mainly to an entropy change. Therefore, the thermodynamic effect of this mutation is to decrease the entropy loss due to binding. Calorimetric titrations in several buffers with different ionization heat amounts indicate a release of protons when the mutant binds GSH, whereas protons are taken up in binding S-hexylglutathione at pH 6.5. This suggests that the thiol group of GSH releases protons to buffer media during binding and a group with low pKa (such as Asp98) is responsible for the uptake of protons. The temperature dependence of the free energy of binding, DeltaG0, is weak because of the enthalpy-entropy compensation caused by a large heat capacity change. The heat capacity change is -199.5 +/- 26.9 cal K-1 mol-1 for GSH binding and -333.6 +/- 28.8 cal K-1 mol-1 for S-hexylglutathione binding. The thermodynamic parameters are consistent with the mutation Tyr49 --> Phe, producing a slight conformational change in the active site.


  • Organizational Affiliation

    Physical Chemistry, Faculty of Experimental Sciences, University of Almería, La Cañada de San Urbano, Almería 04120, Spain.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GLUTATHIONE S-TRANSFERASE P1-1
A, B
210Homo sapiensMutation(s): 1 
Gene Names: GSTP1
EC: 2.5.1.18
UniProt & NIH Common Fund Data Resources
Find proteins for P09211 (Homo sapiens)
Explore P09211 
Go to UniProtKB:  P09211
PHAROS:  P09211
GTEx:  ENSG00000084207 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP09211
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
MES
Query on MES

Download Ideal Coordinates CCD File 
C [auth A],
D [auth A],
E [auth B]
2-(N-MORPHOLINO)-ETHANESULFONIC ACID
C6 H13 N O4 S
SXGZJKUKBWWHRA-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.230 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.206 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 77.764α = 90
b = 89.958β = 97.9
c = 68.887γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
DENZOdata reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Released Date: 1999-03-23 
  • Deposition Author(s): Oakley, A.J.

Revision History  (Full details and data files)

  • Version 1.0: 1999-03-23
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2018-03-14
    Changes: Database references, Other
  • Version 1.4: 2023-08-09
    Changes: Database references, Derived calculations, Refinement description