1IEH

SOLUTION STRUCTURE OF A SOLUBLE SINGLE-DOMAIN ANTIBODY WITH HYDROPHOBIC RESIDUES TYPICAL OF A VL/VH INTERFACE


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 150 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Solution structure of a llama single-domain antibody with hydrophobic residues typical of the VH/VL interface.

Vranken, W.Tolkatchev, D.Xu, P.Tanha, J.Chen, Z.Narang, S.Ni, F.

(2002) Biochemistry 41: 8570-8579

  • DOI: https://doi.org/10.1021/bi012169a
  • Primary Citation of Related Structures:  
    1IEH

  • PubMed Abstract: 

    The three-dimensional structure of a llama single-domain antibody BrucD4-4 was established by use of solution NMR spectroscopy. BrucD4-4 has Val, Gly, Leu, and Trp residues at positions 37, 44, 45, and 47, which are considered to be a hallmark to distinguish llama VH from V(H)H fragments at the germline level. In contrast to the murine and human VHs, BrucD4-4 has sufficient solubility, is monomeric in solution, and displays high-quality NMR spectra characteristic of well-structured proteins. Amide proton/deuterium exchange and the (15)N relaxation data showed that BrucD4-4 has a classic protein structure with a well-packed core and comparatively mobile surface loops. The three-dimensional architecture of BrucD4-4 is analogous to that of VHs from murine and human F(v)s and camelid V(H)Hs with two pleated beta-sheets formed by four and five beta-strands. A canonical and undistorted beta-barrel exposes a number of hydrophobic residues into the solvent on the surface of the three-dimensional structure. The eight-residue H3 loop folds over the side chain of Val37 similarly to that in llama V(H)Hs; however, this interaction may be transient due to the H3 conformational flexibility. Overall, the surface characteristics of BrucD4-4 with respect to hydrophobicity appear to lie between the human VH domain from Fv Pot and the llama V(H)H fragment HC-V, which may explain its enhanced solubility allowing NMR structural analysis.


  • Organizational Affiliation

    Biomolecular NMR Laboratory, Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
BRUC.D4.4135Lama glamaMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 150 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2002-08-07
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-23
    Changes: Data collection, Database references, Derived calculations